

Field tests on overtopping resistance of CS

application to the project of building a levee resisting to overflow in the Rhone delta (Salin de Giraud)

Thibaut MALLET, SYMADREM

Symadrem is a public institution (27 people) responsible for

- operations and maintenance of levees in all circumstances
- levees improvement works

$$Q_{10} = 8800 \text{ m}^3/\text{s}$$

 $Q_{100} = 11800 \text{ m}^3/\text{s}$
 $Q_{1000} = 14300 \text{ m}^3/\text{s}$

Rhone delta is very exposed to inundations by breaches

in 1840, 1841, 1843, 1846, 1856, 1993, 1994, 2002, 2003

4 breaches and spilled volume \cong 230 million m³

People flooded: 12 000 à 14 400 (no dead)

Cost of damages ≈ 365 à 700 million €

Breaches and breaches in progress

■ overflowing ■ internal erosion

The response: a global plan of improvement works

Response of Rhône plan:

- do not raise the levees
- accept overflowing for rare floods (T = 100 or 50 years)
- do not accept breaches in the levees until millenium floods

Levees with long spillways (5 km respectivement by banks) set at Q_{50} or Q_{100} and resisting to overflow until Q_{1000}

« millenium » levees set at $Q_{1000} + 50$ cm

An alternative to concreted rip rap: soil treated with quicklime?

- Levees downstream the delta are less high
- Flooding levels, in the protected area, in case of breaches, are less high (1 m against 4 m upstream the delta)
- Spillway on levees (called levees resisting to overflow) is implemented downstream the urban area

Field experience was carried out between march 2017 and June 2018

3 test levees were built in novembre 2017 to assess the interest of lime-treated soils to prevent overflow erosion

Tested soil: a mixture of a silty soil and a clay soil (main characteristics)

stockage des limons beiaes

• 13 % clay (< 2 μm)

- 87 % (< 80 μm)
- 100 % (< 2 mm)
- PI = 9
- Wn: 26 to 42 % (just after extraction)
- OMC: 16,1 % (untreated); 18 % (2% quicklime) and 19 % (LB50)
- $\rho_{d. \, OMC} = 1.77 \, t/m^3 \, (untreated) ; 1.63 \, t/m^3 \, (2\% \, quicklime 1.00 \, t/m^3)$ compacity 95 %); 1,63 t/m³ LB 50 compacity 95 %)
- Organic matters: 0,9 %

Cross section of plots (building in november 2017)

Levee characteristics

- Height: 2 m and slope (2,5H/1V)
- 0,3 m thick topsoil layer

Building method

- The treatment was carried out in place, layer by layer, on dedicated platforms
- Once treated, each layer was removed, transported, placed on the corresponding levee and compacted by a vibrating padfoot roller.
- The thickness of each layer once compacted was 30 cm and $W \cong OMC \times 1,07$ to 1,08

Photos of equipments and of the works

bulldozer Komatsu D61 EX

pelle liebherr 714 et tombereau

malaxeur Wirtgen 240

camion citerne

silo de stockage

malaxage du sol naturel sur plate-forme avant traitement

énandage de la chaux sur la plate-forme de traitement (600

malaxage sur la plate-forme de traitement

renrice du sol traité à la nelle sur la plate-forme de traitement

approvisionnement et régulage du soi traité sur le fond de fouille du

compactage de la couche C1 du plot n°2

MASONI TP equipments

Real scale overflowing tests series were performed by Inrae (ex-Irstea) 6 months after the construction (may 2018)

Design criteria (SYMADREM) : overflowing water level – 20 cm for Q_{100} and 50 cm for Q_{1000} Overflowing duration : 3h30 from 0 to 50 cm and 5h00 with a 50 cm permanent level

Effective criteria: overflowing water level 42 cm for untreated soil and 35 and 38 cm for lime-treated soils. The overflowing duration was respected

Visual results

Visual results

Untreated soil

2 % quicklime

2 % LB50

Visual results

JET results on undisturbed samples (J + 180) to determine the critical stress τ_c and the Hanson erosion coefficient K_d

Untreated soil

2 % quicklime

2 % LB50

Field tests on overtopping resistance of co Salin de Giraud – Arles (France)

HET on undisturbed samples (J + 180)

HET on laboratory reworked samples (J + 91)

2 % quicklime Untreated soil 2 % LB50 $\tau_c = 99 \text{ Pa}$ τ_{c} = 720,0 Pa $\tau_{c} = 753,1 \text{ Pa}$ le = 3,48le = 5,37le = 5,87Indice d'érosion Vitesse d'érosion Extrêmement lente Très lente Modérément lente Modérément rapide Très rapide

Extrêmement rapide

1000

10000

100

Conclusion

Lime-treated soil to resist to overflow seems to be an interesting alternative to classical design with rip-rap in the context of Salin de Giraud Levee resisting to overflow

- Costs, based on design studies, are equivalent
- At this stage, we keep both of designs and will make our choice in function of the results on the public tender (2023/2024)

Thank you for attention

and welcome for the technical visit on may 31th

Tarascon-Arles (left bank)

