

Cemented Soil Dams Some engineering and design advances

Pierre AGRESTI, ARTELIA

Cédrine ALLEON, ISL

Pierre COCHET, PCT Consultant

CONTENT

- 1. Background
- 2. CSD stability study
- 3. Conclusions

1 -Background

☐ Part of works carried out by CFBR Working Group (since 2013) for Cemented soil dams (CSD) bulletin (for contribution to ICOLD Committee P on Cemented Material Dams)	
☐ R&D collaborative programme (ISL, ARTELIA, LHOIST, EDF, IRSTEA, Tractebel,):	
☐ Data collection on existing construction projects (infrastructures)	
☐ Lab testing programme on a typical lime treated soil	
☐ Numerical soil modelling and stability analysis developed by 2 independent teams and software with PLAXIS (ISL) and FLAC (ARTELIA),	
☐ Several publications (incl. ICOLD Vienna Congress - Q103 : "Treated soil for Small dams and dikes Materials, Concepts, REX and innovation"; Hydro 2022 CSD Engineering advances)	•
☐ special Bulletin to be approved and released by ICOLD Committee P - after n Marseille 2022 ICO Congres	LC

2 - CSD Stability study:

Purpose: investigate stability issues and limits for 30m high typical CSD and define

practical design recommendations

Typical profile:

- Slope 1,25h to 1,1h /1v
- B crest = 6m
- L= 300 m
- Rigid foundation
- Watertight upstream facing
- Construction progress = 1 000 to 5 000 m³/day

Purpose: investigate stability for construction and operation conditions for typical faced CSD

Main assumptions:

- H= 30m maximum
- B crest = 6m
- Rigid foundation
- Impervious upstream facing
- Symmetrical profile
- Slope: 1h to 1,5h / 1v
- Various placement rates

Questions:

Influence of time dependent characteristics? Stability during construction:

- Size limit?
- Design slope criteria?
- Pore pressure development ?

Others related questions: foundation suitable conditions, early age cracking effect,...

Soil characteristics

Natural soil: Silty clay (Loess from Belgium) used for a trial embankment in Rouen

- Fine content ($<80 \mu m$) = 99,5%; Clay content ($<2\mu m$) = 12% (A2)
- PI:7-8%
- Wnat = 17,9 %
- Cohesion= 0kPa
- φ= 35°

Treated soil

- Quick lime treatment: 2,5%
- Moisture Content: 18.2 % (OMC+1)
- Compaction target: ≥ 95 % pd OMC
- Dry density = 17.2 kN/m^3
- Density (wet) = 20,4 kN/m³
- Cohesion peak = var. 20 kPa (@t=0) to 100 kPa (t=195 days)
- Cohesion peak (residual) = var. 20 kPa (5 kPa) [@t=0] to 100 kPa(60kPa) [@t=195 days]
- φ= var. 35° (@0d) to 39° (@75d)

CSD trial embankment (Rouen)

Standard Limit Equilibrium analysis

- Mohr-Coulomb constitutive law
- Layered model (C & φ varying with time)
- Sensitivity analysis for each construction stage (peak or residual Shear Strength, pore pressure, placement rate,...)
- Circle and block failure results :
 - Construction cases => SF >= 1,30
 - Normal operation cases => SF >= 1,50

Conclusion: stable but uncertainties and sensitivity to:

- pore pressure (if $r_u > 0.2$)
- high placement rate and time of first filling
- ⇒ pore pressure development investigation by lab testing
- ⇒ enhanced stability and settlement analysis with enhanced elasto-plastic models

Laboratory testing program & results

- Complementary lab test for consolidation behaviour on :
 - Pore pressure
 - Cohesion development at early age
 - PCC limits

- Shear boxes, oedometric tests; triaxial tests (CUU; CIU);
- Natural and 2,5% lime treated soil
- Ages: 0, 1, 7, 14, 28 days

Main outcomes

- Quick cohesion improvement confirmed
- No pore-pressure development (r_{..}< 0,05)
- Improvement of Over Consolidation Pressure (OCP)
- No evidence of brittle failure : Hardening/softening plastic failure

Oedemetric tests untreated vs. treated (@different curing time)

Numerical model analysis

- 2 softwares :
 - Plaxis
 - Flac 2D
- 3 time dependant constitutive laws :
 - Mohr Coulomb (MC)
 - Plastic Hardening Model (PHM or HSM) Over Consolidate Pressure (time dependent or not)
 - Modified Cam-Clay (MCC)
- Pore pressure :
 - r_{u} = 0,1 (0-0,2 for sensitivity)
 - Simplified saturated approach with Skempton coefficient
- Stability computation stage for each fill layer (40cm)

Plastic Hardening Model (PHM or HSM)

Constitutive law parameters FLAC: Plastic Hardening Model (PHM)

Parameters	Symbol	Value	Unit
Wet Density	γ	20,4	kN/m³
Poisson Coef.	ν	0.2	-
		36.0 @ 7 days	
Friction angle	ϕ'	36.4 @ 14 days	•
		37.1 @ 30 days	
		39.2 @ 75 days and after	
		20 @ 0 days	
		25 @ 7 days	
		30 @ 14 days	
Cohesion	c'	42 @ 30 days	kPa
		75 @ 75 days	
		100 @ 195 days	
		110 @ 390 days and after	
Tensile strength	f_t	$c'/\tan(\phi')$	kPa
Ref. pressure	p_{ref}	100	kPa
Failure ratio	R_f	0.9	-
Elastic modulus power	m	1	-
		3 @ 0 days	
	_	6 @ 7 days	
Elastic modulus @ 50% of Ref. Pressure	E_{50}^{ref}	9 @ 14 days	MPa
Net. 1 ressure		15 @ 30 days	
		30 @ 75 days and after	
Œdométric ref. modulus	E_{oed}^{ref}	same E_{50}^{ref}	MPa
Loading/unloading ref. modulus	E_{ur}^{ref}	$3*E_{50}^{ref}$	MPa

PLAXIS: Hardening Soil Model (HSM)

	Parameters	Symbol	Value	Unit
	Dry Density	γ	17.3	kN/m³
	Poisson Coef.	ν	0.2	-
	Friction angle	ϕ'	35.7 @ 0 days	
			36.0 @ 7 days	
			36.4 @ 14 days	۰
			37.1 @ 30 days	
			39.2 @ 75 days and after	
			20 @ 0 days	
			25 @ 7 days	
			30 @ 14 days	
	Cohesion	c'	42 @ 30 days	kPa
			75 @ 75 days	
			100 @ 195 days	
			110 @ 390 days and after	
	Failure ratio	R_f	0.9	-
	Elastic modulus power	m	1	-
		E^{ref}_{50}	5 @ 0 days	
	Elastic modulus @ 50% of Ref.		7 @ 7 days	
	Pressure (100 kPa)		9 @ 14 days	MPa
	,		13 @ 30 days	
			26 @ 75 days and after	
		. Eref E ₅₀	0,18 @ 0 days	
			0,15 @ 7 days	
	Compressibility index		0,13 @ 14 days	-
			0,09 @ 30 days	
			0,05 @ 75 days and after	
	Swelling index		0,033 @ 0 days	
		Cs	0,016 @ 7 days	
			0,011 @ 14 days	-
			0,006 @ 30 days	
b			0,003 @ 75 days and after	

 $E_{50 \text{ ref}}(t)$, C(t), $\phi'(t)$, Cs(t), Cc(t)

Time dependent parameters

Construction sequence and time dependent characteristics

Results (FLAC) - First filling

• Factor of Safety (HSM $- r_u = 0.1$)

	FoS
End of Construction (dry)	1,9
Instantaneous filling at EoC	1,9
Filling @30 days after EoC	2,1
Filling @90 days after EoC	2,3

Failure shear strain ratio (FoS)

Results (FLAC) – First filling

• Settlement (HSM $- r_u = 0,1$)

	Maximum settlement (cm)	Horizontal downstream max . Displ. (cm)	Max reloading Elastic modulus (Mpa)
End of Construction (dry)	18.	11,9	130
Instantaneous filling at EoC	18.4	13.1	140

Results (Plaxis

Pore pressure (r_u) at end of construction – HSM model

Pore pressure development

 $r_{ij} = 5\%$ at initial state of material

r_u build up during construction phases but remains under 10%

Effect of stress exceeding OCP

Safe assumption shall be made on OCP to stay away from Normally Consolidate behaviour at dam base With slope 1h/1v geometry

FoS slightly higher than 1.3 but significant plasticity at dam base ok for smaller dam height but not recommended for h≥30m

Results (FLAC) – Accidental case

- Facing failure
- Full developpement of pore pressure

	FoS
Facing failure (No watertighness system)	1,10 to 1,20

Not allowable for usual/unusual conditions but safe for accidental conditions, if drawdown and repair works are possible.

4 - Conclusions

- Progressive increase of shear with curing time is the key parameter for CSD stability
- Stability during construction may be critical depending on slope and placement conditions
- No excessive pore pressure failure risk (for usual placement rates < 2-5 m/day)
- No significant selfweight settlement (< 1% H at EoC) foundation settlement compatibility to be carefully considered (see following example)
- Recommended design slopes :
 - for smaller dike or CSD (H< 10m): 1h/1v possible
 - for medium heigh dam (H= 20-30m) : 1.25H/1V recommended
- Steeper slope or higher height might be envisaged but :
 - significant plasticity may occur at the bottom level,
 - stability may be at risk in case of facing failure.
- Comprehensive lab testing program compulsory (various dosages, curing times, constitutive law calibration)
- Strain-hardening time-dependent constitutive models are recommended for stability analysis and design optimization
 - Early age cracking may be considered in case of permanent water exposure: facing recommended.

