

Bulletin Cemented Soil Dams From Transport Infrastructure To Hydraulic Works

> Daniel PUIATTI (DPST Consulting – France) daniel.puiatti@dpst-consulting.eu

Bulletin CSD : Table of content

- 1. Introduction to CMD principle
- 2. General
- 3. Products and materials
- 4. Action of binders on soils
- 5. Properties of cemented soils
- 6. Structural design of dams and levees

- 7. Investigations
- 8. Construction
- 9. Quality control
- 10. Surveillance and monitoring
- 11. Economic aspects
- 12. References
- 13. Annexes
- 14. Applications data sheets

Presentation content

Overview of chapters 2, 3 and 4 of the CSD Bulletin

- 1. Soil treatment : a proven technique
- 2. What cementitious materials?
- 3. What soils?

May 28th , 2022

- 4. Cement: OK! But what about lime?
- 5. Lime: focus on short term actions on clayey soils
- 6. Example of application: lime treatment
- 7. Example of application: cement treatment

1. Soil treatment: a proven technic

- Last 60 years: dramatic increase in transport infrastructure
 - Motorways, airport, high speed lines, platforms, etc.
- Why?
 - Better use of the materials available on site,
 - Reduction of external borrowing and landfills,
 - Reduction of heavy trucks traffic,
 - Reduction of cost and duration of earthworks.
- How big?

May 28th , 2022

- European survey: 100 Mm³ in 2012, equivalent to a 1000 km motorway (Paris Berlin)
- Slow development in hydraulic works
 - Icold Bulletin 54: "Soil cement for embankment dams" (1986)
 - Some applications: cement as well as lime (often for correction of expansive or dispersive soils)

2. What cementitious materials?

- Standardized binders:
 - Cement
 - Calcium air lime Lime (from calcium carbonate):
 - Quicklime: from limestone burning CaCO₃ + Heat → CaO + CO₂
 - Hydrated lime: from quicklime hydration
 CaO + H₂O → Ca(OH)₂ + Heat
- Or a combination of two or several of the followings:
 - Cement, lime,
 - Fly ash and/or supplementary cementitious materials (e.g. slag)

3. What soils?

- Limits: depend on capacity of available technology and compatibility soil/binder(s)
 - Bulletin 54 (1986):
 - D_{max} less than 40 mm
 - % fines preferably below 10 to 20%
 - PI preferably below 5 to 10
 - Limited content of organic matters, SO₃
 - CSD Bulletin (2022):
 - D_{max} up to 100/150 mm
 - % fines: no limitation
 - PI over 45 (up to 60 to 80 in the USA)
 - Limited content of organic matters, SO₃, chlorides, nitrates, micas (these elements, when in sufficient proportion, combine with the clay and the binder and can cause damages or prevent the binder from setting)

B54: soils according to Bulletin 54 (cement) CS: soils according to CSD Bulletin (cement & lime)

4. Cement: OK! But what about lime?

- Cement
 - Comparable to a glue
- Lime
 - A chemical reactant with a high pH: 12,4
 - Action on wet soils: Quicklime reduces water cont. $(CaO + H_2O \Rightarrow Ca(OH)_2 + Heat)$
 - Actions on clayey soils:
 - Short term

Flocculation, modification of Atterberg Limits, increase of bearing capacity

• Long term

Progressive combination with clay particles to make a cementitious material, similar to a cement, leading to an increase in mechanical performance

- Cement treatment
 - Need for clean material (no clay or low clay content)
- Lime treatment
 - Suitable for clayey materials
 - Alone when clay content is enough
 - Before cement treatment (low to medium clay content)

Based on Petrographic, EPMA, and X-ray diffraction analyses of thin-sections of soils (from Harris & Scullion)

5. Lime: focus on short term actions on clayey soils

6. Example of application: lime treatment

- The Friant Kern canal (USA)
 - Irrigation canal
 - Built during the 40s
 - Bank slides due to expansive plastic clays (PI > 35)
 - Repaired during the 70s
 - Surface protection with lime treated sediments
 - 3 to 4% quicklime
 - No more damages since

7. Example of application: cement treatment

- The Pannecière cofferdam (France)
 - 2011 2013
 - Untreated soil encapsulated into a treated carapace
 - Granite Arena

- 4% Hydraulic Road Binder (cementitious material specially designed for soil treatment)

Thank you for your attention

May 28th , 2022

