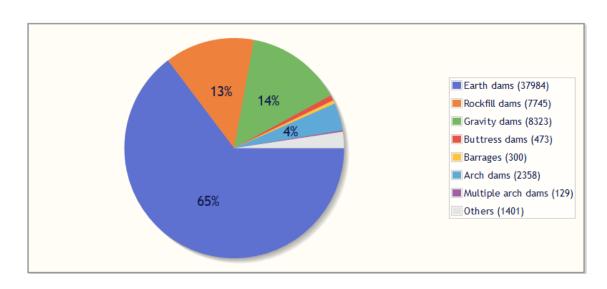


Cemented Soil Dams Introduction to the CMD Workshop


Michel LINO, ISL Ingénierie

Introduction to CMD

Earth dams predominate for some 65 % of all reported dams.

From ICOLD Database (2021)

- 78% of existing dams are embankment dams (Earth and Rockfill) (ICOLD Database)
- 65% are earth dams
- this proportion is even higher in China
- Only 14% are concrete gravity dams

Why?

- ✓ Concrete is an expensive material
- ✓ Good rock foundation is needed for a concrete dam
- ✓ Earth dams are simple to design and build (at least apparently...)

Introduction to CMD

Statistics of different failure types of embankment dam in China (CHINCOLD, 2014)

Dam type	Existing dams ¹	Failed ¹	Ratio
Concrete	2047	11	0.54%
Earth & rockfill	88072	3270	3.71%
Masonry	5633	50	0.89%
Others	527	166	-
Total	96279	3497	3.63%

number Failure type ratio Failure number vs. type Overtopping 1793 51.3% 1400 906 25.9% Seepage 1200 Slidina 116 3.3% 1000 800 Improper 600 171 4.9% Management 400 200 284 8.6% Unknown Sliding Overtopping Seepage 3270 Total

Earth & rockfill dams have a high failure ratio.

Overtopping and internal erosion account for 77% of the failures of earth dam

How to improve overtopping and internal erosion resistance of earth dams?

This one of the main drivers of CMD development.

Introduction to CMD and CSD

The basic principes of CMD

- A **new construction material** different from earth, alluvium, rockfill or concrete/RCC.
- **Environmental friendly**: use the material available in the vicinity and preferably in the reservoir.
- **High degree of safety** : CMD is a cohesive material
 - Resistant to internal erosion
 - Can withstand overtopping
 - High degree of internal and external stability
- Can be adapted to **poor foundation** or even non rock foundation
- The material strength can be fitted to what is really needed, on the contrary of concrete which is generally overdesigned.

Introduction to CMD and CSD

2012 ICOLD Committee P on CMD is launched:

- Dr. Jia President (China), Michel Lino Vice-President (France)
- China, France, USA, Spain, South Africa, Japan, Iran, UK, Greece, Turkey, Austia are the main contributors.
- Objective : 3 bulletins on CMD
 - ✓ RFC bulletin approved in November 2021 : main author is Dr. Jin Feng, with a large international contribution.
 - ✓ CSD Bulletin to be approved in Marseille 2022, drafted by French engineers, great implication of China who adopted this new idea and contribution of USA, Iran and Spain, Malaysia
 - ✓ Hardfill/CSG/CBGR bulletin(s) on going: a mature technology with 3 different approaches from France and Europe, Japan and China

Overview of the CMD technologies

Program of the Workshop

13:50 – 14:10: Presentation (video) of the RFCD Bulletin: F. Jing, China

14:10 – 14:50: Presentation of the CSD Bulletin

Introduction: M. Lino, France

- From transport infrastructures to hydraulic works: D. Puiatti, France

- Properties of treated soils: P. Cochet, France

- Design: M. Lino, France

Perspectives and conclusions: M. Lino, France

14:50 – 16:10: Invited presentations on Cemented Soil uses (about 10 min/presentation)

1. The French Seine North Europe Canal: B. Deleu, France

2. CSD: Engineering and design advances: P. Agresti, France

3. Example of application: China

4. Field tests on overtopping resistance of CS: P. Peeters, Belgium

5. Field tests on overtopping resistance of CS: T. Mallet, France

6. Protection CS dike with high stakes: P. Agresti, France

7. CS and small dams: M. Kaboré, Burkina Faso

8. Soil preparation before treatment: D. Puiatti, France

16:10 - 16:15: Conclusion: M. Lino

