

Draft Bulletin Workshop

ICOLD Technical Committee on Sedimentation of Reservoirs

Sediment Bypassing and Transfer

Robert Boes Laboratory of Hydraulics and Glaciology, ETH Zurich, Switzerland

28 May 2022

4.4.1 Mechanistic Hydro-abrasion Models

$$\underline{A_{r}} = \begin{cases}
\frac{Y_{M}}{k_{v}f_{st}^{2}} \frac{g(s-1)}{112} (T^{*})^{-0.07} q_{s} \exp\left(-\frac{q_{s}}{q_{s}^{*}}\right) \left(\frac{MH}{MH_{B}}\right)^{1.3} \left[1-1.05(T^{*})^{-0.90}\right], \text{ for } q_{s} < q_{s}^{*} \text{ and } 1 \le \frac{MH}{MH_{B}} \le 2.3\\
\frac{Y_{M}}{k_{v}f_{st}^{2}} \frac{g(s-1)}{112} (T^{*})^{-0.07} q_{s} \exp\left(-\frac{q_{s}}{q_{s}^{*}}\right) \left(\frac{MH}{MH_{B}}\right)^{0.3} \left[1-1.05(T^{*})^{-0.90}\right], \text{ for } q_{s} < q_{s}^{*} \text{ and } \frac{MH}{MH_{B}} < 1\\
0, \text{ for } q_{s} \ge q_{s}^{*}
\end{cases}$$

Material resistance
Energy flux term
Cover effect term
Particle hardness effect
Saltation probability

Source: Demiral Yüzügüllü (2021)

 A_r [m/s] = spatially averaged vertical hydro-abrasion rate per unit time k_v [-] = hydro-abrasion resistance coefficient Y_M [Pa] = Young's modulus of the bed lining material f_{st} [Pa] = splitting tensile strength of the bed lining material $s = \rho_s / \rho_w$ = relative paricle density $T^* = \theta / \theta_c - 1$ [-] = excess transport stage q_s [kg/(ms)] = unit gravimetric bedload transport rate q^*_s [kg/(ms)] = unit gravimetric bedload transport capacity MH [-]= Bulk Mohs hardness of the sediment particles MH_B [-] = Mohs hardness of the bed lining material

4.4.1 Mechanistic Hydro-abrasion Models

 Calibration of the hydro-abrasion coefficient for concrete and natural stone liners

Constant k_v value for both laboratory and field data (independent of material strength)

$$k_{v,mean} = 4.8e+04$$

 $k_{v,low} = k_{v,mean} - k_{v,std} = 2.6e+04$
 \rightarrow use for high A_r estimate

4

ICOLD Technical Committee on Sedimentation of Reservoirs

4.4.1 Mechanistic Hydro-abrasion Models

• Maximum abrasion depth

$$\int A_{r} dt = h_{a} = \int_{0}^{4} \int_{0}^{40} \int_{0}^{30} \int_{0}^{40} \int_{0}^{30} \int_{0}^{40} \int_{0}^{30} \int_{0}^{40} \int_{0}^{30} \int_{0}^{40} \int_{0}^{30} \int_{0}^{40} \int_{0}^{40}$$

maximum abrasion depths (95th percentile): $h_{a,max} = h_a + 2\sigma = h_a + 2 \cdot (0.51 + 0.31)h_a = 2.64h_a$ $h_{a,min} = 0$

 h_a [mm] = spatially averaged abrasion depth σ [mm] = standard deviation of abrasion distribution in area of interest

ICOLD Technical Committee on Sedimentation of Reservoirs

4.5 Abrasion Resistant Invert Materials

Typically made of:

Country	Dam	Material	Compressive strength [MPa]	median sediment Ø [mm]	Mean abrasion [mm/a]
СН	Pfaffensprung	Granite	250	250	8
СН	Egschi	Granite	184	60	5
СН	Ual da Mulin	Cast basalt	450	40	< 2
СН	Runcahez	High-strength concrete	77	230	8
СН	Palagnedra	High-strength concrete	80	74	1.5
СН	Solis	High-strength concrete	105	60	29
JPN	Asahi	High-strength concrete	70	50	23

• (Surface) irregularities trigger and intensify abrasion

4.5.1 Lining Material

Medium- and high-strength concrete (HPC)

- wavy pattern of abrasion
- preferable for very large saltating sediment particles (> 30 cm)
- Natural stone (cast basalt, granite)
 - damages typically occur along plate joints
 - jointless tight plate installation preferable
 - or place in staggered way
- Sometimes steel armoring in reaches with high wear
 → e.g. acceleration section at SBT inlet

4.5.2 Tunnel Lining Design

• For particles mainly transported in **rolling or sliding mode** (with minor saltation), abrasion processes are mainly grinding, only weakly impinging

→ both **natural stone pavers and HPC liners** are viable options

- For pronounced **particle saltation** (particularly by large grain sizes) there is mainly impinging wear
 - → very brittle material should be avoided, i.e. use of HPC preferable over (thin) natural stone pavers

4.5.2 Tunnel Lining Design

 recommended: use a wearing surface top layer (natural stone or HPC) with conventional concrete underneath

		Concrete aggregate		Cement		Water	
	Layer thickness [m]	Grain size distribution	Mass [kg/m ³]	type	Mass [kg/m ³]	w/c ratio [-]	Mass [kg/m ³]
Normal invert (High strength concrete with steel fiber)	0.3	0/4: 40% 4/8: 24% 8/16: 36%	1900	CEM II/A-D 52.5R	536	0.33	177
Concrete with steel fibers	0.3	0/4: 41% 4/8: 22% 8/16: 37%	1740	CEM II/A-D 52.5R	450	0.41	185
Concrete with shrinkage reduction	0.3	0/4: 40% 4/8: 24% 8/16: 36%	1900	CEM II/A-D 52.5R	390	0.44	172
High alumina cement	0.15	0/4: 50% 4/10: 50%	2060	High alumina cement concrete	515	0.40	206
Ultrahigh performance concrete	0.08	Quartz sand	870	CEM II/B-M	1100	0.17	187

4.6 Invert Maintenance and Refurbishment

- Erosion of the invert of bypass tunnels not only due to movement of solids but also possibly due to cavitation
- SBTs have to be inspected to assess damage to the invert and walls at the end of the flood season every year.
- If damaged: repairs should be undertaken during the next low flow season
- Time-consuming, difficult, costly refurbishment works

 → consider total LC cost (incl. maintenance and repair)

$$NPV = \sum_{t=0}^{T} \frac{C_t}{(1+r)^t} = \sum_{t=0}^{T} \frac{E_t - I_t}{(1+r)^t}$$

- *T* = accounting period
- C_t = net cash flow at time t
- E_t = earnings at time t
 - = expenses at time t
 - = interest rate

r

4.6 Invert Maintenance and Refurbishment

- Minor damage: epoxy-resin mortar
- Heavy damage (h_a in cm to dm range): replace damaged invert with HPC showing high abrasion resistance
- Ensuring bond between the old and the new concrete
- high degree of quality control necessary while placing micro-resin concrete or HPC

4.7 Design recommendations

Overarching philosophy:

- 1) Minimize loads by optimized flow conditions \rightarrow SBT layout
- 2) Choose appropriate resistance of invert lining (relative to sediment hardness)
- 3) Select suitable invert material

Ad 1)

- Use constant bed slope as mild as possible but assuring supercritical flow
- Avoid bends if possible \rightarrow high local shear stresses due to secondary currents
- Choose cross section with **level invert** geometry

4.7 Design recommendations

Hydraulic considerations

- Aspect ratio in most SBTs B/h < 4 to 5
 - \rightarrow 3D-flow (secondary currents \rightarrow higher abrasion)
 - B/h < 2.3: max. abrasion in the **center** of the tunnel
 - $2.3 \le B/h < 6$: max. abrasion near the tunnel **side walls**

4.7 Design recommendations

Overarching philosophy:

Minimize loads by optimized flow conditions
 → SBT layout

- 2) Choose appropriate relative resistance of invert lining
- 3) Select suitable invert material

Ad 3)

- Consider **transport mechanism** (sliding, saltation) and material characteristics (brittle vs. elastic)
- Do **predictive modelling** using mechanistic models for different materials

Ad 1)

- Use constant bed slope as mild as possible but assuring supercritical flow
- Avoid bends that cause high local shear stresses
- Choose cross section with level invert geometry

Ad 2)

- Carry out a mineralogical analysis of the sediment
- Minimize joint widths and gaps

 \rightarrow see above

 Ensure proper bonding/connection of the different layers

Thank you for your attention Merci pour votre attention

Schweizerisches Talsperrenkomitee Comité suisse des barrages Comitato svizzero delle dighe Swiss Committee on Dams

www.ecsymposium2023.ch

Join us in Interlaken

Rejoignez-nous à Interlaken

Sept. 5 – 8, 2023