





CIGB 27<sup>èME</sup> CONGRÈS 90<sup>èME</sup> RÉUNION ANNUELLE



#### **Embankment Dam Committee E Workshop**

### **Standard Proctor water content variation**

Danie Badenhorst SANCOLD, AECOM



# **Standard Proctor Water Variance Specification**

| Water content variance from Optimum (%) | Application                          | Zone of Earthfill Dam |
|-----------------------------------------|--------------------------------------|-----------------------|
| 0 to 2                                  | Impervious earthfill<br>Materials    | Core                  |
| -1 to 3                                 | Semi-pervious earthfill<br>Materials | Outer Zone            |



#### **Embankment Dam Committee E Workshop**

#### 1 Introduction

- Location of core and outer zones of a zoned earthfill dam.
- Definition of semi-pervious and impervious earthfill materials
- Water content variance specification
- **2 Standard Proctor Compaction Test Definition**
- 3 Specification of Water content variation
- 4 Driekloof Dam shear strength testing
  - Results

#### **5 Conclusions**



#### **Core and Outer Zone Materials**





# **Definition of Impervious and Semi-pervious Earthfill Materials**

| Geomechanical                     | Zone of earthfill dam                                                          |                                      |  |
|-----------------------------------|--------------------------------------------------------------------------------|--------------------------------------|--|
| Property                          | Core (Impervious materials)                                                    | Outer Zones (Semipervious Materials) |  |
| Grading                           | > 60% through 0.42 sieve                                                       | > 40% through 0.42 sieve             |  |
| Clay content (CC) (%)             | 10 <cc<30< td=""><td>CC&lt;10</td></cc<30<>                                    | CC<10                                |  |
| Liquid Limit (LL) (%)             | 30 <ll<60< td=""><td>LL&lt;30</td></ll<60<>                                    | LL<30                                |  |
| Plasticity Index (PI)             | 12 <pi<35< td=""><td>4<pi<12.5< td=""></pi<12.5<></td></pi<35<>                | 4 <pi<12.5< td=""></pi<12.5<>        |  |
| Linear Shrinkage (LS)<br>(%)      | 40 <ls<10< td=""><td>7<ls<0< td=""></ls<0<></td></ls<10<>                      | 7 <ls<0< td=""></ls<0<>              |  |
| Maximum Dry Density (MDD) (kg/m³) | 1 450 <mdd<1 880<="" td=""><td>1 750<mdd<2 100<="" td=""></mdd<2></td></mdd<1> | 1 750 <mdd<2 100<="" td=""></mdd<2>  |  |
| Optimum Water<br>Content (w) (%)  | 14 <w<25< td=""><td>6<w<16< td=""></w<16<></td></w<25<>                        | 6 <w<16< td=""></w<16<>              |  |
| Shear strength (°)                | 18 <phi'<30< td=""><td>28<phi'<38< td=""></phi'<38<></td></phi'<30<>           | 28 <phi'<38< td=""></phi'<38<>       |  |
| Cohesion (C) (kPa)                | 12 <c'<24< td=""><td>C'&lt;12</td></c'<24<>                                    | C'<12                                |  |
| Permeability (k) (cm/s)           | k<10 <sup>-04</sup>                                                            | K>10 <sup>-04</sup>                  |  |



#### Design for a seal (Core) in an embankment dam

- Elasticity is important to prevent cracking
- Casagrande study showed compaction by Standard Proctor facilitate this
- Elasticity in core more important than in outer zones



## **Compaction Standards**





#### **Test references and Details**

| Test                                         | Reference                  | Mould<br>diameter<br>(mm) | Hammer<br>mass (kg) | Fall height of hammer (mm) |
|----------------------------------------------|----------------------------|---------------------------|---------------------|----------------------------|
| Standard<br>Proctor                          | ASTM D698<br>AASHTO<br>T99 | 100                       | 2.5                 | 304                        |
| Modified<br>AASHTO or<br>Modified<br>Proctor | D1557,<br>AASHTO<br>T180   | 100                       | 4.54                | 457.2                      |



#### **Driekloof Dam in South Africa**

Laboratory triaxial shear strength testing with volume change of soil samples







## Geomechanical characteristics for water content variance

| Property                                | Water content variance (%)                |                                                     |  |
|-----------------------------------------|-------------------------------------------|-----------------------------------------------------|--|
|                                         | 0 <w<2<br>(Impervious Earthfill)</w<2<br> | -1 <w<3 earthfill<="" semi-pervious="" td=""></w<3> |  |
| Shear Strength (Phi) (Degrees)          | 1 to 8                                    | 30 to 33                                            |  |
| Cohesion (C) (kPa)                      | +-30 to 90                                | 52 to 55                                            |  |
| Ei Modulus (MPa)<br>(Sigma 3 = 100 kPa) | 2 to 10                                   | 10 to 62                                            |  |
| Ei Modulus (MPa)<br>(Sigma 3 = 200kPa)  | 2 to 15                                   | 15 to 92                                            |  |
| Ei Modulus (MPa)<br>(Sigma 3 = 400kPa)  | 2 to 25                                   | 20 to 135                                           |  |



| Placement 0% <w<2% (impervious="" core="" earthfill)<="" th=""><th>Placement -1%<w<3% (semi-pervious="" earthfill)<="" outer="" th="" zone=""></w<3%></th></w<2%> | Placement -1% <w<3% (semi-pervious="" earthfill)<="" outer="" th="" zone=""></w<3%>                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Shear strength Phi and C vary more  – but not so important for Embankment slope stability                                                                         | Shear strength Phi and C variation is low which is important for Embankment slope stability           |
| Ei varies very little and less than for semi-pervious materials. (no cracking of core)                                                                            | Significant variance more than for impervious soils on Ei. Elasticity less important for outer zones. |
|                                                                                                                                                                   |                                                                                                       |



#### From the above the following can be concluded:

- The Standard Proctor compaction standard should be used for compaction of earthfill in embankment dams.
- As zoning for earthfill embankment dams into a central core and outer zones with impervious and semi-pervious earthfill used in the respective zones, the variation of water content during compaction of the zone materials into 0% to 2% and -1% to 3% of the optimum water content for the respective core and outer zones, provides the required geomechanical parameters for earthfill; and
- provided the basis at Driekloof Dam for a design meeting elasticity
   and no cracking requirements.





# Thank you