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The principal scopes of the bulletin

* Procedures to take into account the non-linear behaviour of
o constituent materials (material non-linearity),
o joints (existing naturally occurring and/or pre/post-formed),
o cracks (interface non-linearity) and
o supporting structures and foundations.

caused by mechanical, physical and chemical processes such as external loads,
restraints and degradation processes.

* Procedures and tools to solve non-linear static, and non-linear dynamic analyses
e Specify minimum requirements for selection of softwares
* Guidelines for selection of material parameter values for non-linear analysis

 The bulletin disregards geometric nonlinearity
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Content of the bulletin

Main chapters and examples of subchapters
Chap. 2 Why and when NLMCD is needed

Chap. 3 Types of structural nonlinearities

Boundary nonlinearities; Material nonlinearities

Chap. 4 Solution methods

Non-linear static and dynamic analysis; incremental iterative
solution

Chap. 5 Finite element codes for non-linear
modelling

Finite element codes used in past benchmarks; pre-
processing & modelling strategy; analysis and post-
processing
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Chap. 6 Selection of material parameter values for
practical NLMCD

Material parameters derived from dam surveillance and
monitoring; Material parameters derived from laboratory
tests; Material parameters for structural interfaces.

Chap. 7 NLMCD examples and case histories

1) BW 14 cracking of a concrete arch dam due to seasonal
temperature variation.

2) Remedial design of cracked dam monoliths subjected to
large post-tensioning, flood and earthquake forces.

5)....
Chap. 8 Conclusions
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Nonlinear behaviour
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Structural non-linear behaviour caused by
material non-linearity in tension
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Non-linear material behaviour in a displacement controlled tensile test.
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Structural non-linear behaviour caused by material non-linearity
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Non-linear material behaviour in a displacement controlled tensile test.
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Structural non-linear behaviour caused by material non-linearity
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Non-linear material behaviour in a displacement controlled tensile an shear test.
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Structural non-linear behaviour caused by material non-linearity
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Non-linear material behaviour in a displacement controlled tensile an shear test.
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Chap. 3 Types of structural nonlinearities
Boundary and Material non-linearities

The bulletin deals with

Boundary non-linearities
* \Vertical contraction joints between cantilever blocks (monoliths)
* Concrete horizontal lift (construction) joints
* Nonlinearity at the dam-foundation interface

Material non-linearities
* Concrete in tension
* Concrete in compression
* Rock foundation
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Boundary non-linearities

Deals with modelling of the transition zone between to parts of a structure, between two
elements of a structure or between two different structures.

* The transition zone is subjected to sliding as well as separation (opening and closing).

* The transition zone appears in the following structural parts:
o Vertical contraction joints between cantilever blocks (monoliths)
o Concrete horizontal lift (construction) joints

o The interface between the concrete dam and its foundation
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Constitutive model for a typical joint element

. . . o, T

* Itis an elastic-perfectly plastic model, (a) . (b) .

with no tensile strength in the normal shear

direction normal to the joint element. . e

. . . . T

* When the joint is separated, neither tension . ”

shear stresses nor normal stresses are T R il R

transmitted across the joint. l normal strain €, shear strain €,
* K, and K, are constant when 7 < 1,,. compression T,

KII
* Sliding occur when 7 = 7, and Kg = 0.
1
contact #——> separation
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Constitutive model for vertical contraction joints

The spacing of vertical contractions joints is controlled by temperature
requirements and construction constraints but are usually around 15 m apart.

The contraction joints are usually grouted before the first filling of the reservair.

Some contraction joints may include shear keys to provide additional sliding
resistance by engaging adjacent monoliths.
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Constitutive model for the vertical contraction joints

q =normal stress transmitted across the contraction joint v q

v =relative displacements between both sides of the
contraction joint.

1%

do

k,, =normal stiffness

qo = tensile strength

The tensile strength is set to zero to
represent an ungrouted contraction joint.

Shear keys may also be needed if the joints are expected to
open a significant amount and/or significant shear is
expected to be transferred between monoliths. If shear keys
are to be included, the constitutive model of the contraction
joint needs to account for the tangential stiffness (k).
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Constitutive models for lift joints — shear strength

The peak shear strength is the
peak strength on a bonded
sample.

The sliding friction strength is
the peak strength on an
unbonded sample.

The residual strength is reached
following large displacements.
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The shear stress vs. displacement and shear stress vs. normal stress curves for

bonded and unbonded lift joints.
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Constitutive models for lift joints — bi-/trilinear models

bonded and unbonded concrete lift
joints with initial cohesion.

bilinear relationship for lift joints
without initial cohesion, no cohesion
o, < Op.

trilinear relationship for lift joints

without initial cohesion, no cohesion
o, < op.

T ) ®
®-0
O-0 il
) c, ‘i = A

P Ca I, ~ Tcn
- T =0, tan()+Ca
G, -
T “n tan(¢ +1) K 4 Gn

} - -

@ i G, *tomobilise Ca
O-0
$°n
T
b -

T =0, tan(})
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Constitutive models for lift
joints — multi-stage model

Uncracked stage: defined by the tensile strength f;, the
cohesion t;, and the friction coefficient, pu.

Partially cracked stage (either due to tension or shear):
the behaviour follows a classical Gi and G£' fracture
energy-based model; the damage is computed from
the damage index DI, for tension or DI, for shear; and
the normal and shear joint stiffnesses, K,;and K
respectively, decrease with increasing damage.

Fully cracked stage: the tensile strength is zero, and the
shear strength is a function of the normal stress and
the shear displacement.
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Uncracked failure envelope
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Stress vs. displacement relationships
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Partially cracked failure envelope
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Nonlinearity at the dam-foundation interface

The interaction between the dam and the bedrock is governed by
* the dam structure’s design and size, and the mechanical properties of its constituent materials

* the bedrock’s mechanical properties, existing fracture planes and the water pressure in the
bedrock’s cracks, and

* the mechanical and geometrical properties of the transition zone between the dam structure
and the bedrock.
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Nonlinearity at the dam-foundation interface

! J_, ! ! l . !

Mechanically, the interaction between the dam e - i T
structure and the bedrock can be considered as 2C°”“ete : : Cji‘%ret/‘i :
follows: : \2\// ocal principal str >>c>i : A :
a. There is no transition zone between the dam “ A7 :I‘i | \\// I — :}
structure and the bedrock, that is, there is a rigid L o/ i A |
connection between the dam and the bedrock. ; ,§\Z\ | : \/>< |
b. There s a transition zone in between the dam —-;—R-ofk-—-— --—------------i-- -;-R-°5k -'-/---4.__._._.._.--._.;-.-
structure and the bedrock, with its own set of | ﬂobalstresses | | T |

mechanical properties.
= Model

= Mode Il and mixed mode | and Il
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Nonlinearity at the dam-foundation interface

L] L] L] L] 2 a
Configuration of the transition zone oy
Rock Excavated rock contour Theoretical damage zone
ion cl Concrete Limitofthe
excavation class Measure (a) Measure (b) i
theoreticl
Wall Bottom Wall Bottom damagezone
A B A B ~ ~
1 0.1 0.3 0.2 0.5 - -
2 0.3 0.4 0.3 0.7 = o 2 Excavation limit
3 06 07 05 11 eoretical rock contour
4 0.8 1.0 1.1 1.7 ' Excavatedrock
5 D -1 -1 - contour
Note: Rock excavation class is indicated by a number (1-5) in combination with a letter (A or B) for the part to
which the requirement applies. For only the specified number, the specified rock excavation class applies to both )
slope / wall and bottom. .
1) Excavated rock contour should be outside the theoretical rock contour. - Rock
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Nonlinearity at the dam-foundation interface

Constitutive model for the transition zone — a damage-plasticity model

l o}
On ’ (1-Ds)Ks"us" - Ds 0'n tan®
shear (0 <0)
shear (70 20) K< (1-Dy)Ks"
- -0y tand
: Seaname}
& -
ARKS ™= L PSR IR Frictional
> s Un On tan® stress
K0 Un Un
0
(1-Ds)Ks"us® +
D o tan®
(a) under pure normal stress (b) under shear stress with normal stress

Nie et. al. (2022)
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Nonlinearity at the dam-foundation interface

An experimental example

200 mm -

—_—

T

Loading condition and geometry of the
specimen 200 mm x 200 mm x 140 mm, Krounis et.al. (2016).

Krounis et.al. (2016).

Concrete was cast on Rough or smooth rock surfaces,
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Nonlinearity at the dam-foundation interface

An experimental example

5.0 4.0 4.0
= 4.04 = 1 =
E ] "E 3.0 - E 3.0 1
* 30 e TI
7 i v @ 4
§ @ 2.0 § 2.0
e j =
s ] 3 51 1
5}0 104 3 104 § 1.0 -
wn 4
U'U ! ! v ' v ﬂ' ! ! 0,0 T T T T T T T 1 ] U-U v T ¥ L ¥ L] L] L]
0.0 1.0 2.0 3.0 4.0 0.0 1.0 2.0 3.0 4.0 0.0 1.0 2.0 3.0 4.0
Shear displacement, J, (mm) Shear displacement, d; (mm) Shear displacement, d, (mm)
(a) (b)
Typical shear stress— displacement curves for Typical shear stress— displacement curves for unbonded
bonded samples with rough rock surfaces, at samples with (a) rough and (b) smooth rock surfaces, at 0.8
0.8 MPa normal stress, Krounis et.al. (2016). MPa normal stress, Krounis et.al. (2016).
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Nonlinearity at the dam-foundation interface

An experimental example

10,0 A

Lo
o
1

4,0 -

Shear strength, o, (MPa)

0,0 T T T 1
Shear vs normal strength - Best-fit straight line 0,0 1,0 2.0 3.0 4.0

on the results of experiments, ¢ = 3.0 MPa and
@, = 54.4°, Krounis et.al. (2016).

Normal stress, ¢, (MPa)
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Material nonlinearity — concrete in tension

Models and material relationships are
based on Eurocode and model code

Undamaged material

Oct = Eci&ct Ect = Ectl

Damaged material — linear o, — w curve

w
Oct = 1- fctm
W¢

GF

w,. =2
¢ fetm

.fctm" """"""""" E

(a) &t
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Material nonlinearity — concrete in tension

Models and material relationships are
based on Eurocode and model code

feem = 0.3 (fcm - 8)2/3
Undamaged material

1
_ ]c /3
Oct = Eci€ct Ect = Ectl E.=F., .|l
Cl c0 10
Damaged material — linear o — w curve

Gp =73 (fem)**®

w
¢ fem= mean compressive strength MPa
GF
W, = 2
¢ fetm
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Material nonlinearity — concrete in tension — strain rate effects

Blast effects

Earthquake and induced shocks

\ehicle

Creep Quasi-static e

Airplane
impact

Hard impact
(missle, rock falls)

Strain rate [1/9]

—q1‘__

%——
2

] ] ] ] ]
10° 10°  10° 10° 10° 10 1¢ 10 1 100 10°

] ]
1 — 1 -

lllustration of the strain rates corresponding to the different loading effects
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Material nonlinearity — concrete in tension — strain rate effects

o(N/mm?)
6
5 5 ft  Speak Gp The deformation in the figure varies between the slow
,!'4-,"i (mm/s) (N/mm?) (18--5,,,, (N/m)|  rates of quasi-static loading and the slow rates of hard
=¥ o . . . . .
4 —!-",' |‘\." — 125 10°° 33 13 16 impact loading. The stain rate range in the figure covers
I - 250 1070 48 17 172 more than 60 % of the rate range of the earthquake and
) W 150 55 17 313 induced shocks.
\ N ‘
meas. length: 100 mm
O ~ y ‘-'-'—-? ............
50 100 150 6200
6(10 °m)

The influence of the deformation rate on uniaxial
stress-deformation curve.
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Material non-linearity — concrete in tension — strain rate effects

E .Gg In some codes and references tensile strength and

len = fz modulus of elasticity are given as functions of strain
ctm rates. For a given [, which is assumed not to be

Characteristic length (I;, m) is a measure affected by the strain rate, the G and w, can be
of the material’s brittleness. The higher calculated. In this way the complete stress-
the [, the less is the brittleness. deformation relationship of the material, as a
The test results show that the [, is function of the strain rate, can be determined and
negligibly affected by the strain rate. be used for a non-linear analysis.

The non-linear behaviour of concrete in the cases of creep, low-cycle faticue and
some degradation processes have been treated in a similar way in the bulletin.
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Material non-linearity — concrete in tension
unloading and reloading

Y ottt to

Ou Loading cycle

il iy

e e e
e —— LT T TR

\ Softening zone

H o, .
/ bt e

Post peak tensile behaviour of concrete including Assumed stress distribution near a crack; before
unloading and reloading, Hordijk (1992). and after a loading cycle, Hordijk (1992).
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Material non-linearity — concrete in tension
unloading and reloading

Monotonic increasing deformation
Envelope of cyclic loading

Stress-deformation relation of the fracture zone subjected Secant unloading and reloading, the simplest
to the monotonic increasing deformation, Hordijk (1992). model.
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Constitutive laws for rock foundations

 The rock mass behaviour is strongly related to the joint spacing and the number of
joints.
* For each unique rock mass there exists a specific volume of the rock mass where the

behaviour becomes stationary, this volume is usually referred to as the
Representative Elementary Volume (REV).

e The behaviour of the rock mass is related to the scale or size of the structure founded
on the rock.

 The foundation area against the rock foundation for most dams is usually larger than
the REV and an idealization of the rock mass into a continuous material are usually
acceptable.
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Constitutive laws for rock foundations

¢é=D-o Isotropic linear-elastic model
where
XX 1 =V —Vy 0 0 0 "Oxx T
Eyy —v, 1 =vp 0 0 0 Tyy
€7z 1 |—=v,~V 1 0 0 0 Oz
= D = — m m n =
£ gxy ’ Em 0 0 0 2(1 + Vm) 0 0 and o Txy
<C:yz 0 0 0 0 2(1 + Vm) 0 Tyz
Ezx 0 0 0 0 0 2(1 + Vm) Tyx

Em is the Young’s modulus for an isotropic rock mass and v,, is the Poisson’s ratio of the rock
mass.

FURp e A TR W




New ICOLD Bulletin Prepared by Technical Committee A COMPUTATIONAL ASPECTS OF ANALYSIS AND DESIGN OF DAMS (2020-23)
Non-Linear Modelling of Concrete Dams

MARSEILLE

Constitutive laws for rock foundations

Nonlinear behaviour — Elasto-plastic model

delPt = (D)~ tday; + (DP) " doy;

£
0
£, £
EI-.'.-I
* Yield criterion f(O'ij, K) =0
Kk = Hardening parameter

* Flowrule q(o-ij' K) =0 A = Plastic multiplier

df Ok
* Hardeningrule — — _f N H > 0 Hardening

dx 041

H = 0 Perfectly plastic
H < 0 Softening
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Constitutive laws for rock foundations

Mohr-Coulomb failure criterion

! ! ! /
o,—0, O,+0, .
f=—4 5 S 5 2sing_—c._-cosg. =0
o, —0, O, +0,
q=—"—"—2-——""T3siny,, Non-associated flow potential
2
g, and g; = major and minor effective principal stress
O = friction angle of the rock mass
Cr, = cohesion
W = dilatation angle of the rock mass
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Chap. 4 Solution methods

In a non-linear static condition, the load and the displacement are not
proportionally related. Therefore, it is not possible to solve the system of FD“;
equations:

F=Kt'u

K; = tangent stiffness matrix
F = force vector
u= nodal displacement vector

by inversing the stiffness matrix. The stiffness matrix depends on the
displacement. One needs, therefore, to use an iterative solution method. >

Displacement

In the dynamic and transient conditions other causes of non-linearity are
also added to the above-mentioned condition, for instance damping in the
case of dynamic loading and alteration of the mechanical and physical
properties of the material due to the sustained loading and degradation.
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Chap. 4 Solution methods Fos
E
The bulletin discusses solutions methods for non- Newton Raphson’s method
linear
: R
e static,
* quasi-static and I,
e dynamic.
. . ta Uy Uy e “a lty ,I’)isplacemcnt
conditions. Iterative methods such as Newtown
Raphson, modified Newton Raphson and Arc-length A Force T
have been discussed. b
Solution methods for quasi-static and dynamic % Arc-length method
problem are also discussed. N\
'C
1
T ¢’
\\\ ;I
. ﬂ?,.-
Displacement
>
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Non-Linear Modelling of Concrete Dams
Chapter 5 - FE-SOFTWARE AND CAPABILITIES FOR THE NON-LINEAR MODELLING OF CONCRETE DAMS

NON-LINEAR MODELLING OF CONCRETE
DAMS

Russell Michael GUNN
Swiss Federal Office of Energy (SFOE)
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 The main objective is to present an overview of finite element codes or
software packages that are frequently used for the non-linear
modelling of concrete dams. In doing so, some of the minimum
software requirements needed to perform the non-linear modelling of
concrete dams and their inherent limitations are exposed.

1 The contents are based largely on data collected and collated from past
ICOLD TCA benchmarks performed over 30 years that treat directly or
Indirectly NLMCD.

Note: By indirectly, it is meant that the focus of the benchmark was not
necessarily the nonlinear modelling of concrete dams, but rather some other
phenomenon such as extreme temperature loading or concrete swelling.
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 Plasticity (isotropic, orthotropic, visco-plastic)

Smeared cracking (multi-directional fixed crack, total strain based, Maekawa-Fukuura Model for Concrete, Kotsovos
Concrete Model and others.)

Viscoelasticity/creep (power law, Maxwell chain, Kelvin chain. etc.)

Creep and Shrinkage (transient creep at elevated temperatures, uniaxial shrinkage/discrete function (maturity
dependent) and Model Code inputs such as CEB-FIP MC 1990, ACI 209R-92, Korean KCI 2007, Dutch NEN 6720/A4, etc.)

Interface Behaviour (such as linear and nonlinear elasticity, discrete cracking, crack dilatancy, bond-slip, friction,
combined cracking-shearing-crushing, the Janssen nonlinear relation between bending moment and rotation for line
interfaces to shell elements, and general user-supplied models). In addition, many of these models can be coupled with
other material laws.

Reinforcement (embedded, bond-slip and many subset constitutive models)
* Model Code Libraries

» Concrete (CEB-FIP Model Code 1990, fib Model Code for Concrete Structures 2010, Eurocode 2 EN 1992-1-1,
American Concrete Institute (ACI) 209R-92, Am. Assoc. of State Highway and Transportation Officials (AASHTO),
Japan Concrete Institute (JCI), Japan Society of Civil Engineers (JSCE), Korea Concrete Institute (KCI) 2007,
NEN 6720/A4, JCSS Probabilistic Model Code)
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» Rebar and prestress cables (Eurocode 3 EN 1993-1-1, NEN 6770)
» User-supplied models (Elasticity and Viscoelasticity, Nonlinear Elasticity, Plasticity and Cracking, Shrinkage, Bond-slip, etc.)
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For example, the DYNA-3D software package has 14 types of contact surfaces, of which the most
frequently used:

e Tied (Type 2): method used to attach two parts of a finite element model together with differing mesh
refinement.

e Sliding with separation and friction (Type 3): is a penalty formulation and allows two parts to be
either initially separate or in contact; large relative motions are permitted, and Coulomb friction is
included but cohesion is not. Surfaces may open or close in a completely arbitrary manner and the
choice of master or slave surface is not important.

e Shell edge tied to shell surface (Type 7). is the same as type 2, but only for shell elements.

e Tied with failure (Type 9): is a penalty method that ties the surfaces together until a prescribed failure
criterion, based on normal and/or shear failure stress, is reached. Thereafter, the surface functions as a
Type 3.

e Shear key contact surface: This is an in-house contact method developed in DYNA-3D by the
Lawrence Livermore National Laboratory (LLNL). The geometry of the shear keys is defined as a sine
wave of given amplitude (depth of the shear key) and length (upstream to downstream spacing of the
shear keys). The contact can open and close. Sliding along the contact is governed by the opening of
the joint and the geometry of the shear keys. The joint slides freely once the height of the shear key is
exceeded by the joint opening.
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The evaluation and interpretation of results obtained following the nonlinear analysis of concrete dams
depends greatly on the post-processing facilities available within the FE code and the modelling strategy applied
in the pre-processing phases of the studies.

For NLMCD it is recommended to consider three-dimensional modelling as a standard practice for gravity as
well as arch dams. Deviation from this recommendation may result in the use of higher factors of safety.

Displacements are perhaps best represented as vector plots with a component breakdown in the upstream-
downstream, tangential and radial directions. These vectors can be overlaid onto contour plots that should be
consistently scaled for the range of loading with the same increments.

Principal stress vectors that overlay stress contours are also practical for evaluation and interpretation
purposes.

Potential failure identification: rocking-sliding blocks, tension, compression, shear and mixed modes.

Plotting vectors on developed views that project the curved dam faces to a reference cylinder, with a suitably
selected in radius that englobes the crest section, that is in turn "opened-up flat”.

Damage may be portrayed as a scalar or vector and readily plotted with time. As such "damage disks" can be
plotted.

Cracking and crack propagation can be visualised as lines and/or surfaces.

History plots or "videos" are also a vital and in some cases the only way to understand the phenomena. In this
sense, magnified plot histories for seismic and time-dependent effects such as AAR provide the key information

needed to pinpoint the source of load and reaction. “
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Chapter 6 - SELECTION OF MATERIAL PARAMETER VALUES FOR THE PRACTICAL
NON-LINEAR MODELLING OF CONCRETE DAMS

Russell Michael GUNN
Swiss Federal Office of Energy (SFOE)

NON-LINEAR MODELLING OF CONCRETE
DAMS
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IT’S NOT WHAT WE DO, IT’'S HOW WE DO IT ...

This chapter presents an approach that can be adopted for the selection of material
parameters for the practical nonlinear modelling of concrete dams as well as sample
material parameter values collated from the literature and past ICOLD benchmarks (TCA).
The focus is given to mass concrete and structural interfaces and reference to some
reservoir and foundation material properties such as different rock types are provided.
Great importance is given herein to field data and selecting or ascertaining material
properties from laboratory samples extracted from the structure. Due to economic
reasons, more often than not recourse is made to data found in the literature rather than
laboratory test results on the actual structure under review. Moreover, only standard short-
term tests are performed. This might be a false economy especially when performing
NLMCD.

Distinction is made between reversible (linear) and irreversible (nonlinear) movements
noting that we are only addressing material nonlinearity for small displacements.
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PROTOTYPE MATERIAL CALIBRATION ... with field investigations .. to be sure!

Three methods may be used to analyse «—— Adjustment Period ——><—— Control Period ——
measured data and assist in the selection of 20.00 '
material parameters for the NLMCD: (a) ~ 1500
deterministic such as the finite element £ S J&A\ Identification
method; (b) statistical, based solely onthe  § 1000 05— f/ o= o andirend of
analysis of measurement data and (c) hybrid & 500 5 L / effects
methods that incorporate methods (a) and (b). &
e ol
f(tw,s)=f,(t)+5,(w)+f(s) 5.00

January May September January May September January
f(t)=C,+C,et +C,e' | Dete |
—a— |rreversible effects —e— Hydrostatic effects
It ffect Measured
1_-2 (W] _ ng + C4W2 + CEWS + CEW4 —o— Seasona emperature eflecls ——Ivieasure

—»— Calculated

f,(s)= C,cos(s)+ Cgsin(s)+ Cysin’(s) + C,, sin(s)cos(s)
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Ci (i = 0 to 10) = unknown coefficients; s = seasonal temperatures; w = reservoir elevation and t = time.
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MATERIAL PARAMETERS WITH A NICE TWIST ...

A In":é;i?l?:nt Short term Medium term
. § ) creep strain creip strain
_ G offomax _ _ 3 ; ‘ Actual static tensile strength: fi =0.32 ff’ 3 (MPa)
Lateral strain 140 A:ELS“E'” ; s a Apparent static tensile strength: £, = 0.44 £2/* (MPa)
los _ E e e s i Actual seismic tensile strength: f, =049 fcz’ :{MPa)
! arort term 1 Apparent seismic tensile strength: f; = 0.65 f. / (MPa)
106 f-j secant modulus 2
40 ; Rapid loading
S Elastic limit ; secant modulus I
0002 0000 0002 Swan Strain = so 100
Compressive strength ... Modulus stiffness ... Tensile strength(s) ...

Loading

Stress

W2

True crack

Crack/damage .
localisation zon Finite Strain

roree element True stress-strain curve

Approx. stress-strain curve
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ﬂ ictitious

N ' L]

Ll

|_ Fracture

> 2 Bi-linear energy limit Reduction of

~ B i approximation 24 ; \ fracture energy with
7 o increase in FE size

E m

m Crack width (mm) .

O Equivalent Y 3

D tensile stress Strain™

-

Fracture energy to derive tensile strength with mesh objectivity ...
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MARSEILLE Biaxial loading Biaxial envelope Triaxial loading
[ I
'1./1 - - 10 -
.% I i o1 T T T T T ( , T I
- = (a-0625£/f]) O =T
0 e — ‘ . | s ) 6 2793 4 |
3 2 // | — 4 2 \ ; 8 _
o @
= g —o— G4{02 =-1/0 (£9) I
o n —— 64(62 = -1/0 (g3 = £3) . R
o 3 oo 110,505 (e Moist Concrste {1: 2: 3: 0.70) ] ~
! 2 _ - 1
- E 1[5, = -1/-0.505 (¢,) e 365a)f" BQ*% % max !
o £ —=X= go2 =-1/-0.525 (e3)| hraF Oksi 3.2ksl _
3 z —0— ayfgz =-1/-1 (1= ¢) 2 nz
> 0 —*= ooz =11 (d) 4 18.5
o 8 2.7 -1
8 g : Strai4n mm/m (s:f £, €3) .-..-: - oy 8 23.56 .
m —
O © c
Ll 'g 1 q' ] 1 1
& : Q 0.0 S
> 5 f\ / @ () 20,000 40,000 -10.000 0 10.000
— ‘; 0g — 35
o 2 N 3 o Gl = -1/0 (1) :
— @ : ,I+ | —o— @)= 110 (5= ¢3) g Load
- 3 / :g:xgg; E&)) =~ |Combination |Result. Sliding" Overturning Buoyancy Bearing Stresses®
wv = 04|+ =-1/0.07 (g2 b
o g \ " —X=0,/0,|= -1/0.07 (e5) o Vn Ymec Ymé Vb FfZ) > Ymqg O¢ Gc-ta) Ot
Ll 2 \i ::z:ffl;ggg E?i g— Construction e/3 00 1.3 1.3 0% - 20 2315 15
1/62|= -1/0. 2
Y ; g e ; . S Usual e/3 00 15 1.5 0% 1.5 3.0 3a2 20
E G Strain mm/m (g1, €5, &5 ) © Unusual 2e/3 0.0 1.3 1.3 0% 1.3 2.0 2a1l5s 1.5
o .
é E . Extreme e 0.0 1.0 1.0 0% 1.0 1.0 lal 1.0 Rate effects
<< > _S +\*\ ' ‘ Remarks
o % *g '1; K008 ‘ f'c = uniaxial compressive strength at 365 days, cylinder
| 2 . - .
< = = o \ \ 006l / —_— 10 e f'+ =tensile strength (brazilian), cylinder
' < i B o167 . .
o é c & \\ | == Gyl = 100 (e2= £5) e = section thickness
Ll o o E b oa| 64/65=1/0.0546 (¢,)
o = I, = 1/0.0546 L . . i
I<_E faa) & g &2 e o L o E:; 1) State of stress within dam, interfaces and dam-foundation interface
s 5 = 2 “’\\ o~ o= r=e 2)Fs = (N-U)/U where
o.00 ava = 11 {e) N = Composant of normal,force on the section
-0.04 -0.02 0.00 0.02 0.04 0.08 0.08 0.10 _ . L.
Strain mm/m (g4, €, €3 ) U = resultant interstitial forces o 5 v T r : !
58 - 3) Biaxial strength (Kupfer et al. ) log v,
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1.0
. (o
CYCLIC CREEP WITH RECOVERY by relaxation ... . ,uf“'”] reep recovery
2 o0s
E
100000 5 /
/ € 08
- C
10000 g Low Creep Zone g
2 04
71000 &
% E g 02
o 2 100 o
te 0.0
B 10 E 0 50 100 150 200 250 300 350 400
> Time (days)
E 1 ; =—{—Average measured long-termcreep (DamA2) Predicted by compliance function (Tf =0) ‘
g 1 10 100 1000 10000 100000 120
V) Age of concrete at first loading, © (days) |I~f =100 |
o o DamAf O DamA2 A DamC 3 100 :
— x DamD & DamB ——SIA =
g ﬂ —a—ACl —&— CEB-AP —+—DamA (Case study A) L 080
(V2] <
< W S 060
c t g 080,
> -1 3
E % 1 [ L_JI_ ] . n g 0.40
— _ _ f - -
22 J(t,r) =~ K +K,|1-e 1+ (p(ﬂ: +a)(t )] e
o or Eo o
E 8 0.00
< 0 50 100 150 200 250 300 350 400
< . )
= 3 Cyclic long-term creep: Double power (top right) and Time (days)

modified double power laws (bottom right). T7=0(days) 8 Measured Average Lang-Term

59 s TF = 100 (days}
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SPECIAL EDITION ... NEW AAR CONCEPT '

Selsmic load critical multi- ~ Typleal concrete zonatlon . .,
c
Core sample microscopy
- Optical microscopy - crack index CSimn [16] Yes
- SEM on sliced core samples [17]
- EDX on sliced core samples [18] |

Core samples:

Factors affecting results:

- Structural stress-state

- Casting

- Phases for residual expansion
(conditioning, non-linear, linear,
irreversible)

- Leaching

- Anisotropy (length & diameter)
Mitigation Measures:

- Taken horizontally (Casting)

- Greater than 10 cm from surface
(avoid leaching)

-Slze, $ =100 m, L =200 mm

axial stress zones (d/s) (cementitious content)  Jgn Cement

Crest Zones

(:?273 ke/m3
@225 Kke/m3
@j;ﬁkg(ms (

7a % / ZoomA

M
\/ Statlc load critical multi-axial stress
zones with stress directions (d/s)

galleri

Y

New Structures

Design Mix & Material
Selection

-AAR > Limits

No Compute fictitious AAR Expansion/ AAR testing may be reviewed

Swiss Standards [1],

[5], [9] Crack Index at time t (mm/m.vear annually and at least every 5 years Residual nsion 21]:
(CFmv) within the context of normal dam - Previous AAR identification test

- Evaluate the behaviour of the dam surveillance activities conditions apply (sample selection &
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Field observations

- Crest movements (road, pillars, etc.)
- Surface cracking

- Damage

- Rims, pockets, exudation, etc.

- Optical microscopy (field)

using a statistical regression analysis
tool such as DamBASE [12] and/or FEA
models.

- Estimate displacements due to AAR
based on the back-analysis of trial
zone(s) affected by AAR

- Compute for the given direction (N),
CFimnfor all or part of the structure.

Likely AAR Zone classification based
on stresses, thermal/hydric
conditions, cement zoning (required
strength) (see figure 1) with focus
on (by priority):

1-Crest (A)

2 - Crown base (C)

Interpretation of results:

- Test duration : few months to 1 year
(possible leaching) depending on AAR
rate & age of structure.

- Alkali sources (cement, aggregates)

- Conformity/validation of results with
Cirn, CSitn,CFimv and CPT tests.

G« ureleree and seiety
(

Decision Processing by

Notes: Recommended tests/characteristics given in

|_
(s
Ll
3 - Mid-height section (B) Owners & Authorities bold text
>' - 4 - Abutments (D)
CE - Petrography of aggregates [1] -
O - Microbars on aggregates (MBT) [5] )
Compute the field Crack Index
- Concrete Performance (CPT) [9] -

l_ - Mechanical testing (Compression, d f;z%g:g:;g:;?gfonswm
< tension & modulus of elasticity) [11] L
(a'st | - _
O Core samples:
m _ Factors affecting results:

Core sample microscop - Structural stress-state
<| N 5 . - Casting

- Optical microscopy - crack index CSim [16] . .
- - SEM on sliced core samples [17] —Yes y Phas,‘?s er re3|duall expapsmn

- EDX on sliced core samples [18] (conditioning, non-linear, linear,

| .| irreversible)
> et

60

Targeted Long-term Monitoring)

tests). Results used for prognosis test
validations.

- Cores immediately wrapped, stored
at 38°C, RH>95% (saturated air) or
water or NaOH solutions

- Phase 1 : Conditioning (moisture
uptake)

- Phase 2a : Non-linear expansion

- Phase 2b : Linear-expansion

- Phase 3 : Irreversible expansion
(AAR)

Numerical Modelling [22

- Calibration (Past service periods)

- Prediction (long-term > 20 years)

- Incorporation of rehabilitation
measurements (ex. saw cutting) into
AAR numerical model(s).
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: 03
TILEM State-of the-Art Reports Phase 1 - Finite Element and Constitutive Model B based on L y Exp i —
0z
25

MARSEILLE Steps |Objective Cylinder | Initial conditions
4 x h (cm)
1a [Constitutive Model 16x32 f.=38.4 MPaf,=3.5MP3, E=373

(mechanical propert ies) GPa, £, =-0.002, G, = 100 Nm/m2 and

New three-step approach to e e R e s
select AAR material parameters

Strain (%)

)] is &
IagnOSIS 3a |Capturing creep 13x24 Note - creep predominated in the
Prog n OSiS constrained direction

4a |Effect of temperature on |13 x24 RH (t =0) = 100%, Cy linder base is free
Of AA R Affe cted AAR free expansion to deform
5a |Effect of relative 16x32 RH (t =0) = 85%, T = 38°C g
Structures humidity on AAR free =
d Phase 1 - FE code and

State-of-the-Art Report of the RILEM 6a |Effect of confinement on |13 x24 T=38"C

Strain (%)
° . s "
° 3 2 @ = 8
2
\ g
15 H
ta2
¥ 78
i i
g
s
[ H

constitutive model validation "Q L o e
based on core laboratory - s

experiments (RILEM 2021);

U Phase 2 - Existing dam
structural or macro level
calibration based on observed
field measurements (BMW11);

J Phase 3 — Rehabilitated dam
structural or macro level

calibration based on the results - - <
Sotirce: Argessa AG, Axpo AG — e . N L
Of Steps 1 and 2 (CHJ E2021)- Lang:sscrlnitHn: 1000(Seeseit3) 2

Vertical displacement (mm)
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STRUCTURAL INTERFACES EXPLAINED ..... LIFT JOINTS

150 Seuad ko _ )
- ' ensile strengt : :
" Crest \ Joint centres psi MPa psi MPa
—_— Parent concrete (splitting) 1.7 f'c23 0.32 f'c23 2.6 f'c?/3 0.49 f'c2/3

Bonded lift joints (direct) 0.85 f'c2/3 0.16 f'c2/3 1.3 f'c?/3 0.24 f'c2/3
Unbonded lift joints Nil Nil Nil Nil
Shear Strength Angle of friction

[ (Peak) ¢ (psi) c (MPa) f(°)

[ Bestfit | 304.58 2.10 57

137.79 0.95 57

/7
Sliding friction strength

[Bestfit | 72.52 0.50 49

0.00 0.00 48
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2 SRS S

% -

BONDED SPECIMEN
7 0 <
O 5 2
) 5 E
< a % SLIDING FRICTICN STRENGTH
é g “ AESIDUAL STRENGTH
5 z X
- 07 14 ,{_
=2 Direct Tensile Strength (MPa) f UNBONDED
HORIZONTAL DISPLACEMENT o

62




New ICOLD Bulletin Prepared by Technical Committee A COMPUTATIONAL ASPECTS OF ANALYSIS AND DESIGN OF DAMS (2020-23)
Non-Linear Modelling of Concrete Dams

MARSEILLE

PUTTING IT ALL INTO PRACTICE .....

joint

< 460.00 m —
Left b!anlf 3 . 5 6 7 8 S 0 n 12 3 14 15 1% 17 18 19 20 n n 23 2Rhlgl;lt b?Gank WL 18 10 maSI 4.50 m
S G ' i X i Iny A
Second phase .
mmmmmEE s “Rirh TR ein bl Atee mem L= o oAl at feox bl Rl == g - -8k —— - - 1 - - sl 'Ib_-::::r st /
= 1762,80 } &1?
777777777 7-:; n e R s e | e 176% v . [, 7:7 - D > - < TN ST //
***************** T— s <IN RES” o SR e R e //,' !
% @ om : T R Core extraction 24 cm ss /[ :
e e 7’“7 Geodetic target
Second phase // ,-"
:'. ) ; i770 675 | / Overhang E
\ \ Bedding slab /«i —14.03 S
/414, % 1 1 ©
Y ./ X d ' I (e0)
’ . Gravel mix 280 l —\
;/ 1750 zsi:}—-\ ¥
/ Prepakt Joint — 3 \'\ g
>_ 1740 : : ‘.13.‘0 \
% First phase ~f \-\ -
L|7) 1730 g A‘:’g;’feur 7 ,u'r/.’w:‘
(<,E) Longitudinal base fis g Gallery
S :
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PLACE YOUR ORDERS to learn more .....

NON-LINEAR MODELLING OF CONCRETE
DAMS

Bulletin XXX

PR e e o e e g

I CASE STUDY
N
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Chapter 7
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NLMCD EXAMPLES AND CASE HISTORIES

J BW 14 - Cracking of a concrete arch dam due to
seasonal temperature variation

1 BW 13 - Numerical modelling of the partial demolition
of Beauregard dam

1 Many examples outline how calibrate numerical
models with measured data

PRI T ST
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Cracking of a slender,
reinforced concrete arch dam
due to seasonal temperature

variations
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Each participant had to predict

1. The extent of cracking on the dam
2. The displacements of the dam in
summer and winter conditions

Elevation

v

351 :
Displacement

— Undeformed
— — Max
—-—- Min

X [m]
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Provided data

Geometry and mesh of the dam and the foundation

General material parameters — o e
O Density, E-modulus, Poisson’s ratio, - max. / P

H P
H - .
5 i / - S \

P 43
P “\
s
~,
v ~, \

thermal data, strengths etc.

=
Pl
o

9 0 el ety
Loading conditions : s L \\
J Gravity ‘min @\
) Hydrostatic water pressure o o \
1 Seasonal temperature variations P N 2 T Ak o Ve \

1
5 6 7 8 9 0 M 12
Month
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Aspects of the numerical modelling to be freely chosen

) How to perform the thermal analysis (steady state vs transient
analysis, convective boundary conditions vs prescribed nodal

temperatures etc.)
] How to model the contact between the dam and the foundation

(fixed contact, contact formulation, interface elements etc.)

Geometry of the dam Geometry of the FE model

F “ )y
AA A A A A A A A A
>

No cohesion, due to asphalt coating
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Aspects of the numerical modelling to be freely chosen

) Fracture energy and type of non-linear material model for
concrete

) How to include the rock mass and assign boundary conditions
(size of the rock and where and how to apply the boundary
conditions)
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Most participants
performed transient
analysis with convective
boundary conditions
(Robin) instead of
prescribed nodal
temperatures conditions
(Dirichlet) but all results
are in good agreement

New ICOLD Bulletin Prepared by Technical Committee A COMPUTATIONAL ASPECTS OF ANALYSIS AND DESIGN OF DAMS (2020-23)
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Thermal analyses results

deqC
0 -0 TiEsR )
E .
-10 e
10,990
e
=15 o4
1
20 | o |
B L.
-25 252
An example
Three examples of transient analyses of steady

state analysis
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Influence of contact modelling

[
(]
]

U, Magnitude vi:;."" U, Magnitude

) Different approaches influence the

displacements of the dam and the crack pattern
R R L R ) Numerical issues arise related to the local
" sliding, especially in the central part of the dam

. A participant constrained the downstream line
of the concrete dam only to avoid sliding

—@

A A A A A ATA A A

Sliding of the
central part

uheBE o _-tuﬂ..lnl.“.--.ln Ll b ey
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Influence of the fracture energy on the crack pattern

Observed crack pattern o
| o
0.0004
>~ ! 0.0002

g 0 Min

T TTeeT b o Vi :
; - | | —— N eppeqv end 2 200 Nm/m

Type: Equivalent Plastic Strain - Top/Bottorn

Unit: mm/mm
Time: 26

0.0051881 Max

600 0.0003
0.00025
0.0002
500 0.00015
0.0001
400 9 ? N i i
300 k g .
200 T /
100 I I 500 N|||/|||
0
7 8 6

9 10 11 12 13 14 15 1

Participant T -I.uu“m

Fracture energy (Nm/m2)

S |

+ [
v I
o I
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) The concrete-rock interaction has large

influence on the predicted displacements o Maximum displacement (NLFEA) —— — ’
(large joint opening occurs due to the 90 ‘

‘
slenderness of the dam) 50 s

10
11
12
13
15
16
e \/\/inter 2011
- a» ‘\inter 1966

70

* Cohesive interface models have no influence
on the results

* Tied constraints provide results in bad
agreement with the measured one

60

50

40

30

Displacement (mm) x-dir

20

10 ¥74

The temperatures provided to the . N\
participants were more extreme than those 0 0 4 s 50 10 1O M0 16

. Crest length (m)
recorded when measuring the dam
displacements

FURp e A TR W




New ICOLD Bulletin Prepared by Technical Committee A COMPUTATIONAL ASPECTS OF ANALYSIS AND DESIGN OF DAMS (2020-23)
Non-Linear Modelling of Concrete Dams

Modelling
of the nonlinear behaviour

of Beauregard dam



New ICOLD Bulletin Prepared by Technical Committee A COMPUTATIONAL ASPECTS OF ANALYSIS AND DESIGN OF DAMS (2020-23)
Non-Linear Modelling of Concrete Dams

MARSEILLE

What was going on?

A Deep-Seated
Gravitational Slope
Deformation (DSGSD)
strongly affected the dam
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2

Since the first
fillings, the dam

- L X - % / g‘ b 37
started deflecting RN S @ S-S0 B0 Aol 1 1
upstream S N in2013 f

In 1969 the Italian Dam
Authorities lowered down the
operational water level from 1770 to 1710 m asl

(limited volume nearly 1/10 of the designed one)
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Cracks on the downstream face and
sliding of some vertical joints

| R O 8

i
1__11 I_Llell__ﬂ"L‘;ll'L_‘!LlJ‘ ]
.n.z:ﬁt___: l-l‘

//\
_‘Lower part of the
~ downstream face
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Why non linear
numerical
modelling?

$

Focus on step 1

Non-Linear Modelling of Concrete Dams

Forecast the future
dam behavior at
short-medium term
resorting to the
calibrated numerical
model

|dentify the material
parameters of the
numerical model to

interpret the dam
behavior since its first
fillings

New ICOLD Bulletin Prepared by Technical Committee A COMPUTATIONAL ASPECTS OF ANALYSIS AND DESIGN OF DAMS (2020-23)

Support the designer
to assess different
rehabilitation
solutions to guarantee
the safety long-term
operation of the dam
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The numerical finite element model

Deep-Seated = /. N Downstream
Gravitational N embankment
Slope Deformation . e
(DSGSD) g Ban,;

Shear surface of ‘ i . Pulvino
the DSGSD 4

Upstream ¥ Rock
embankment Foundation

... and 16 contact surfaces ' I I
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In situ and testing data were
used to define the material
parameters of the constitutive
laws of concrete

|
e el o =(-d)E (e -5?) | | = o, =(L—d,)E, (¢, —£?)
4 el Concrete Damage
T S 7™ N . .
S 3 SN 38 § Plasticity
= 1 =i = e | constitutive law
x , i X o . o
2 Ao-ae, 2 O 1 for concrete
= e 3 _ = , j -
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Data from the monitoring and control systems are
important first to set up properly the loading and
kinematic conditions of the numerical model
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Numerical displacements compared to the
measured ones to calibrate the structural
response of the numerical model
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The numerical damage parameter
contour was compared with:

1. the cracks detected by visual inspections

2. the P-wave velocity tomography
measured on the downstream face and
the main vertical section
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Partial demolition by
blasting

ST
(1) COFFERDAM
(2) BACKFILLS

(3) DAM REMOVAL

s
/."/,f)?\\“-\

(1702: NORMAL TOP ‘WATER LEVEL) ////

2




New ICOLD Bulletin Prepared by Technical Committee A COMPUTATIONAL ASPECTS OF ANALYSIS AND DESIGN OF DAMS (2020-23)
Non-Linear Modelling of Concrete Dams

ICOLD & CFBR Technical Committee Workshop on
Non Linear Modelling of Concrete Dams

Manouchehr Hassanzadeh
Russell Gunn
Frigerio Antonella




