

ICOLD 27TH CONGRESS 90TH ANNUAL MEETING

CIGB 27^{èME} CONGRÈS 90^{èME} RÉUNION ANNUELLE

New ICOLD Bulletin Prepared by Technical Committee A
COMPUTATIONAL ASPECTS OF ANALYSIS AND DESIGN OF DAMS (2020-23)

Non-Linear Modelling of Concrete Dams

A new ICOLD bulletin under completion

M. Hassanzadeh, R. Gunn and A. Frigerio

The ICOLD Bulletin on Non-Linear Modelling of Concrete Dams (NLMCD)

Authors:

Francisco Lopez

Antonella Frigerio

Massimo Meghella

Manouchehr Hassanzadeh

Richard Malm

Fredrik Johansson

Russell Gunn

Australia

Italy

Italy

Sweden

Sweden

Sweden

Switzerland

The principal scopes of the bulletin

- Procedures to take into account the non-linear behaviour of
 - o constituent materials (material non-linearity),
 - joints (existing naturally occurring and/or pre/post-formed),
 - cracks (interface non-linearity) and
 - supporting structures and foundations.

caused by mechanical, physical and chemical processes such as external loads, restraints and degradation processes.

- Procedures and tools to solve non-linear static, and non-linear dynamic analyses
- Specify minimum requirements for selection of softwares
- Guidelines for selection of material parameter values for non-linear analysis
- The bulletin disregards geometric nonlinearity

Content of the bulletin

Main chapters and examples of subchapters

Chap. 2 Why and when NLMCD is needed

Chap. 3 Types of structural nonlinearities

Boundary nonlinearities; Material nonlinearities

Chap. 4 Solution methods

Non-linear static and dynamic analysis; incremental iterative solution

Chap. 5 Finite element codes for non-linear modelling

Finite element codes used in past benchmarks; preprocessing & modelling strategy; analysis and postprocessing

Chap. 6 Selection of material parameter values for practical NLMCD

Material parameters derived from dam surveillance and monitoring; Material parameters derived from laboratory tests; Material parameters for structural interfaces.

Chap. 7 NLMCD examples and case histories

- 1) BW 14 cracking of a concrete arch dam due to seasonal temperature variation.
- 2) Remedial design of cracked dam monoliths subjected to large post-tensioning, flood and earthquake forces.

.....

5)....

Chap. 8 Conclusions

Nonlinear behaviour

$$f = k(u) \cdot u$$

$$M \cdot \ddot{u} + C(u) \cdot \dot{u} + K(u) \cdot u = F(t)$$

Physical/mechanical properties of the material/structure depends on the displacement/strains.

Structural non-linear behaviour caused by material non-linearity in tension

Tensile test setup

Test results

Additional displacement due to formation of fracture zone

Stress displacement curve of fracture zone

Non-linear material behaviour in a displacement controlled tensile test.

Structural non-linear behaviour caused by material non-linearity

Properties of the linear elastic section

Properties of the fracture zone

Non-linear material behaviour in a displacement controlled tensile test.

Structural non-linear behaviour caused by material non-linearity

Non-linear material behaviour in a displacement controlled tensile an shear test.

Structural non-linear behaviour caused by material non-linearity

Non-linear material behaviour in a displacement controlled tensile an shear test.

Chap. 3 Types of structural nonlinearities Boundary and Material non-linearities

The bulletin deals with

Boundary non-linearities

- Vertical contraction joints between cantilever blocks (monoliths)
- Concrete horizontal lift (construction) joints
- Nonlinearity at the dam-foundation interface

Material non-linearities

- Concrete in tension
- Concrete in compression
- Rock foundation

Boundary non-linearities

Deals with modelling of the transition zone between to parts of a structure, between two elements of a structure or between two different structures.

- The transition zone is subjected to sliding as well as separation (opening and closing).
- The transition zone appears in the following structural parts:
 - Vertical contraction joints between cantilever blocks (monoliths)
 - Concrete horizontal lift (construction) joints
 - The interface between the concrete dam and its foundation

Constitutive model for a typical joint element

- It is an elastic-perfectly plastic model, with no tensile strength in the direction normal to the joint element.
- When the joint is separated, neither shear stresses nor normal stresses are transmitted across the joint.
- K_n and K_s are constant when $\tau < \tau_y$.
- Sliding occur when $\tau=\tau_{\nu}$ and $K_{s}=0$.

Constitutive model for vertical contraction joints

- The spacing of vertical contractions joints is controlled by temperature requirements and construction constraints but are usually around 15 m apart.
- The contraction joints are usually grouted before the first filling of the reservoir.
- Some contraction joints may include shear keys to provide additional sliding resistance by engaging adjacent monoliths.

Constitutive model for the vertical contraction joints

q = normal stress transmitted across the contraction joint

 ν = relative displacements between both sides of the contraction joint.

 k_n = normal stiffness

 q_0 = tensile strength

The tensile strength is set to zero to represent an ungrouted contraction joint.

Shear keys may also be needed if the joints are expected to open a significant amount and/or significant shear is expected to be transferred between monoliths. If shear keys are to be included, the constitutive model of the contraction joint needs to account for the tangential stiffness (k_s).

Constitutive models for lift joints – shear strength

- The peak shear strength is the peak strength on a bonded sample.
- The sliding friction strength is the peak strength on an unbonded sample.
- The residual strength is reached following large displacements.

The shear stress vs. displacement and shear stress vs. normal stress curves for bonded and unbonded lift joints.

Constitutive models for lift joints – bi-/trilinear models

- 1-Ca-4 bonded and unbonded concrete lift joints with initial cohesion.
- 1-3-4 bilinear relationship for lift joints without initial cohesion, no cohesion $\sigma_n < \sigma_n^*$.
- 1-2-3-4 trilinear relationship for lift joints without initial cohesion, no cohesion $\sigma_n < \sigma_n^*$.

Constitutive models for lift joints – multi-stage model

- **Uncracked stage:** defined by the tensile strength f_t , the cohesion τ_i , and the friction coefficient, μ .
- Partially cracked stage (either due to tension or shear): the behaviour follows a classical G_F^I and G_F^{II} fracture energy-based model; the damage is computed from the damage index DI_n , for tension or DI_τ , for shear; and the normal and shear joint stiffnesses, K_n and K_τ respectively, decrease with increasing damage.
- **Fully cracked stage:** the tensile strength is zero, and the shear strength is a function of the normal stress and the shear displacement.

The interaction between the dam and the bedrock is governed by

- the dam structure's design and size, and the mechanical properties of its constituent materials
- the bedrock's mechanical properties, existing fracture planes and the water pressure in the bedrock's cracks, and
- the mechanical and geometrical properties of the transition zone between the dam structure and the bedrock.

Mechanically, the interaction between the dam structure and the bedrock can be considered as follows:

- a. There is no transition zone between the dam structure and the bedrock, that is, there is a rigid connection between the dam and the bedrock.
- b. There is a transition zone in between the dam structure and the bedrock, with its own set of mechanical properties.
 - Mode I
 - Mode II and mixed mode I and II

Configuration of the transition zone

Rock excavation class		Excavated rock contour Measure (a)		Theoretical damage zone Measure (b)	
	Wall	Bottom	Wall	Bottom	
	Α	В	Α	В	
1	0.1	0.3	0.2	0.5	
2	0.3	0.4	0.3	0.7	
3	0.6	0.7	0.5	1.1	
4	0.8	1.0	1.1	1.7	
5	_1)	_1)	_1)	_1)	

Note: Rock excavation class is indicated by a number (1-5) in combination with a letter (A or B) for the part to which the requirement applies. For only the specified number, the specified rock excavation class applies to both slope / wall and bottom.

¹⁾ Excavated rock contour should be outside the theoretical rock contour.

Constitutive model for the transition zone – a damage-plasticity model

Nie et. al. (2022)

An experimental example

Loading condition and geometry of the specimen 200 mm x 200 mm x 140 mm, Krounis et.al. (2016).

Concrete was cast on Rough or smooth rock surfaces, Krounis et.al. (2016).

An experimental example

Typical shear stress—displacement curves for bonded samples with rough rock surfaces, at 0.8 MPa normal stress, Krounis et.al. (2016).

Typical shear stress—displacement curves for unbonded samples with (a) rough and (b) smooth rock surfaces, at 0.8 MPa normal stress, Krounis et.al. (2016).

An experimental example

Shear vs normal strength - Best-fit straight line on the results of experiments, c = 3.0 MPa and $\emptyset_i = 54.4^\circ$, Krounis et.al. (2016).

Material nonlinearity – concrete in tension

Models and material relationships are based on Eurocode and model code

Undamaged material

$$\sigma_{ct} = E_{ci} \varepsilon_{ct}$$
 $\varepsilon_{ct} \le \varepsilon_{ctl}$

$$\varepsilon_{ct} \leq \varepsilon_{ctl}$$

Damaged material – linear σ_{ct} – w curve

$$\sigma_{ct} = \left(1 - \frac{w}{w_c}\right) f_{ctm}$$
 $\varepsilon_{ct} > \varepsilon_{ctl}$, $w \le w_c$

$$\varepsilon_{ct} > \varepsilon_{ctl}$$
 , $w \leq w_c$

$$w_c = 2 \frac{G_F}{f_{ctm}}$$

Material nonlinearity – concrete in tension

Models and material relationships are based on Eurocode and model code

Undamaged material

$$\sigma_{ct} = E_{ci} \varepsilon_{ct}$$
 $\varepsilon_{ct} \le \varepsilon_{ctl}$

Damaged material – linear σ_{ct} – w curve

$$\sigma_{ct} = \left(1 - \frac{w}{w_c}\right) f_{ctm}$$
 $\varepsilon_{ct} > \varepsilon_{ctl}$, $w \le w_c$ $w_c = 2 \frac{G_F}{f_{ctm}}$

$$f_{ctm} = 0.3 \cdot (f_{cm} - 8)^{2/3}$$

$$E_{ci} = E_{c0} \cdot \left(\frac{f_{cm}}{10}\right)^{1/3}$$

$$G_F = 73 \cdot (f_{cm})^{0.18}$$

 f_{cm} = mean compressive strength MPa

Material nonlinearity – concrete in tension – strain rate effects

Illustration of the strain rates corresponding to the different loading effects

Material nonlinearity – concrete in tension – strain rate effects

The deformation in the figure varies between the slow rates of quasi-static loading and the slow rates of hard impact loading. The stain rate range in the figure covers more than 60 % of the rate range of the earthquake and induced shocks.

The influence of the deformation rate on uniaxial stress-deformation curve.

Material non-linearity – concrete in tension – strain rate effects

$$l_{ch} = \frac{E_{ci}G_F}{f_{ctm}^2}$$

Characteristic length (l_{ch} , m) is a measure of the material's brittleness. The higher the l_{ch} the less is the brittleness. The test results show that the l_{ch} is negligibly affected by the strain rate.

In some codes and references tensile strength and modulus of elasticity are given as functions of strain rates. For a given l_{ch} , which is assumed not to be affected by the strain rate, the G_F and w_c can be calculated. In this way the complete stress-deformation relationship of the material, as a function of the strain rate, can be determined and be used for a non-linear analysis.

The non-linear behaviour of concrete in the cases of creep, low-cycle fatigue and some degradation processes have been treated in a similar way in the bulletin.

Material non-linearity – concrete in tension unloading and reloading

Post peak tensile behaviour of concrete including unloading and reloading, Hordijk (1992).

Assumed stress distribution near a crack; before and after a loading cycle, Hordijk (1992).

Material non-linearity – concrete in tension unloading and reloading

Stress-deformation relation of the fracture zone subjected to the monotonic increasing deformation, Hordijk (1992).

Secant unloading and reloading, the simplest model.

- The rock mass behaviour is strongly related to the joint spacing and the number of joints.
- For each unique rock mass there exists a specific volume of the rock mass where the behaviour becomes stationary, this volume is usually referred to as the Representative Elementary Volume (REV).
- The behaviour of the rock mass is related to the scale or size of the structure founded on the rock.
- The foundation area against the rock foundation for most dams is usually larger than the REV and an idealization of the rock mass into a continuous material are usually acceptable.

$$\varepsilon = D \cdot \sigma$$

Isotropic linear-elastic model

where

$$\boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \varepsilon_{xy} \\ \varepsilon_{yz} \\ \varepsilon_{zx} \end{bmatrix} \text{ , } \boldsymbol{D} = \frac{1}{E_{m}} \begin{bmatrix} 1 & -\nu_{m} - \nu_{m} & 0 & 0 & 0 \\ -\nu_{m} & 1 & -\nu_{m} & 0 & 0 & 0 \\ -\nu_{m} - \nu_{m} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2(1 + \nu_{m}) & 0 & 0 \\ 0 & 0 & 0 & 0 & 2(1 + \nu_{m}) & 0 \\ 0 & 0 & 0 & 0 & 0 & 2(1 + \nu_{m}) \end{bmatrix} \text{ and } \boldsymbol{\sigma} = \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \tau_{xy} \\ \tau_{yz} \\ \tau_{zx} \end{bmatrix}$$

 $E_{\rm m}$ is the Young's modulus for an isotropic rock mass and $\nu_{\rm m}$ is the Poisson's ratio of the rock mass.

Nonlinear behaviour – Elasto-plastic model

$$d\varepsilon_{ij}^{\text{tot}} = (D^e)^{-1} d\sigma_{ij} + (D^p)^{-1} d\sigma_{ij}$$

$$f(\sigma_{ij},\kappa)=0$$

$$q(\sigma_{ij},\kappa)=0$$

$$H = -\frac{\partial f}{\partial \kappa} \cdot \frac{\partial \kappa}{\partial \lambda}$$

 $\kappa = Hardening parameter$

 $\lambda = Plastic multiplier$

H > 0 Hardening

H = 0 Perfectly plastic

H < 0 Softening

Mohr-Coulomb failure criterion

$$f = \frac{\sigma_1' - \sigma_3'}{2} - \frac{\sigma_1' + \sigma_3'}{2} \sin \phi_{\rm m} - c_{\rm m} \cdot \cos \phi_{\rm m} = 0$$

$$q = \frac{\sigma_1' - \sigma_3'}{2} - \frac{\sigma_1' + \sigma_3'}{2} \sin \psi_{\rm m}$$

Non-associated flow potential

 σ_1' and σ_3' = major and minor effective principal stress

 $\phi_{\rm m}$ = friction angle of the rock mass

 $c_{\rm m}$ = cohesion

 $\psi_{\rm m}$ = dilatation angle of the rock mass

Chap. 4 Solution methods

In a non-linear static condition, the load and the displacement are not proportionally related. Therefore, it is not possible to solve the system of equations:

$$F = K_t \cdot u$$

 K_t = tangent stiffness matrix

F= force vector

u= nodal displacement vector

by inversing the stiffness matrix. The stiffness matrix depends on the displacement. One needs, therefore, to use an iterative solution method.

In the dynamic and transient conditions other causes of non-linearity are also added to the above-mentioned condition, for instance damping in the case of dynamic loading and alteration of the mechanical and physical properties of the material due to the sustained loading and degradation.

Chap. 4 Solution methods

The bulletin discusses solutions methods for nonlinear

- static,
- quasi-static and
- dynamic.

conditions. Iterative methods such as Newtown Raphson, modified Newton Raphson and Arc-length have been discussed.

Solution methods for quasi-static and dynamic problem are also discussed.

Displacement

ICOLD 27TH CONGRESS 90TH ANNUAL MEETING

CIGB 27^{èME} CONGRÈS 90^{èME} RÉUNION ANNUELLE

New ICOLD Bulletin Prepared by Technical Committee A
COMPUTATIONAL ASPECTS OF ANALYSIS AND DESIGN OF DAMS (2020-23)

Non-Linear Modelling of Concrete Dams

Chapter 5 - FE-SOFTWARE AND CAPABILITIES FOR THE NON-LINEAR MODELLING OF CONCRETE DAMS

Russell Michael GUNN
Swiss Federal Office of Energy (SFOE)

CONTENTS

- 5.1 INTRODUCTION
- 5.2 FINITE ELEMENT CODES USED IN PAST BENCHMARKS
- 5.3 PRE-PROCESSING & MODELLING STRATEGY
 - 5.3.1 MODELLING STRATEGY
 - 5.3.2 POTENTIAL MODES OF FAILURE & DAMAGE
- 5.4 ANALYSIS
 - 5.4.1 PREREQUISITES OF SOFTWARE CODES FOR THE NLMCD
 - 5.4.2 BOUNDARY NONLINEARITY IN DIFFERENT FE CODES
- 5.5 POST-PROCESSING
- 5.6 CONCLUSIONS AND RECOMMENDATIONS

- ☐ The main objective is to present an overview of finite element codes or software packages that are frequently used for the non-linear modelling of concrete dams. In doing so, some of the minimum software requirements needed to perform the non-linear modelling of concrete dams and their inherent limitations are exposed.
- ☐ The contents are based largely on data collected and collated from **past** ICOLD TCA benchmarks performed over 30 years that treat directly or indirectly NLMCD.

<u>Note</u>: By indirectly, it is meant that the focus of the benchmark was not necessarily the nonlinear modelling of concrete dams, but rather some other phenomenon such as extreme temperature loading or concrete swelling.

Software	-7
ANSYS	
ABAQUS	
= DIANA	
CANT-SD	
= MERLIN	
= ADINA	
■ KRATOS	
■ COBEF	
■ PAK	
Unknown	
■ SOLVIA	
■ GEFDYN	
 ABAQUS, F 	IESTA
□ CCRAP	
= CODE_AST	ER
* FRAC-DAM	

				_	
	■ NLFEM				Total NLFEM
Software	.T Arch	Arch-Gravity	Buttress	RCC	
ANSYS	12		2		14
ABAQUS	9		2	3	14
DIANA	8		2	3	13
CANT-SD	4			1	5
MERLIN	2		2		4
ADINA	3				3
KRATOS	1	1		1	3
COBEF	3				3
PAK	2				2
Unkno wn	2				2
SOLVIA			2		2
GE FDYN	2				2
ABAQUS, FIESTA	2				2
CCRAP			2		2
CODE_ASTER	1			1	2
FRAC-DAM			2		2
Total	51	1	14	9	75

<u>Disclaimer</u>

The contents of this chapter are not aimed at favouring or otherwise any specific FEM code or software package or any particular software company. Reference is however made to some codes to highlight a point of technical interest related to the objectives of this chapter of the bulletin.

wealth

		>	× *	vearen					effects	Young Modulus E Poisson Ratio v density p	
				phrase of kno	_	6	2001	¥	of AAR		See of second of the second of
¥	Year	Theme	Title □ □		Picture □ □ □ □ □ □ □ □ □ □ □ □ □				Evaluation		Annual An
	1994	A1	sis of joint behaviour nd hy drostatic loads arch dam	Young's elastic modulus (rock) $E_{g} = 3.60 \text{ exp}^{13} \text{ Nor}^{2}$ Young's elastic modulus (rock) $E_{g} = 1.29 \text{ exp}^{13} \text{ Nor}^{2}$ Poisson ratio coefficient (concrete) $\nu_{g} = 0.20$ Poisson ratio coefficient (rock) $\nu_{g} = 0.16$					ate reaction of an Italian im	c) Physical-anchanical parameters of materials: Concrete • elente modulus: 18000 MPs • mans demairy: 2400 Kplarl • Penson coefficient 0.2	In-majoral Vinese
			Non-linear analysis or under thermal and it for an arc	Dermal dilatation coeff. Concrete)	Jon Jon	8 2		A A 9000		compressive strength 23 Mgs tentils strength 13 Mgs And plantation Compressive strength 23 Mgs tentils strength 013 Mgs tentils str	Wee legis whe legis where legis and
	1994	A2	Evaluation of critical unform temperature decrease for a cracked buttress dam	- Young's elastic modulus $F_{c} = 3.0 \exp^{20} \mathrm{Jm}^{-2}$ Poisson ratio coefficient $v = 0.16$ Thermal dilatation coefficient $1.0 \mathrm{cm}^{-2} \mathrm{cm}^{-2}$ $2.2 \mathrm{-Rock} (\mathrm{deformable foundation}) : \\ - Young's \mathrm{elastic modulus} \qquad F_{c} = 2.3 \mathrm{cm}^{-2} \mathrm{fm}^{-2} / \mathrm{cm}^{-2}$ $- Poisson \mathrm{ratio cerficient} \qquad v = 0.2$ different crack lengths Li $0.5 \mathrm{m} \mathrm{g} 2. \mathrm{m} \mathrm{g} 10. \mathrm{m} \mathrm{g} 20. \mathrm{m} \mathrm{g} 40. \mathrm{m}$	Son Since with the state of the				crack analysis of a RCC arch effe	O. ANG collection determs: NCC * total diff "writed displacement at the top of the naim block: 30 mm **Number Oymets **Dec **Demoty **C* **Demoty **P **Pometry **P **Pometry **P **Pometry **P **Pometry **P ***Pometry **P ***Pometry **P ***Pometry **P ***OLET 0.167 ***Experiment ************************************	
	1996	A1	Earthquake analysis of an arch dam including the nonlinear effects of contraction joints opening.	Young's clarific modulus 1.0 E 10 Nive ² Poisson modulus 0.2 Concerne density 2.600 kg/m ³ Worker density 1.500 kg/m ³ Nytereneric damping factor 0.0 kg/m ³ The equivalent viscous damping factor The dynamic behavior of the joint should be reprodued containing a fiction factor between factor aftering and 10 The Topics of the poisson o	The state of the s	8	2005	B	Temperature field simulation and dam	The district modulus of concretes successes with the development of concrete age. The district modulus of the three types of concrete Visions to show all Table Claim. Table C. Barie modulus of exercise Vision 20 20 20	Name
	1996	A2	Evaluation of stress intensity factor along a crack tip in a buttress dam under thermal gradient.	PARAMETER SYMBOL VALUE UNITS	5m Iom older 10m web. 10m Iom of the form of the f	11	2011	A	A model for concrete swelling for the Kariba dam	Preparty Montain Loss Preparty Demonstrates Preparty Demonstrates D	
			a gravliy dam with interface crack varying uplift pressure.	Manufal parameter Reph. Converse	Drain sats	11	2011	Q	Concrete swelling in two Spanish dams	Model by Um et al. Model by Saouma and Perotti (Kinetic & stress dependent)	
	1999	A2	Evaluation of failure flood level for a (rock/concrete) and va	Treatment (a) (bag) 20 10 10 10 10 10 10 10	Series and Comments of Comment	13	2015	A	Seismic safety exaluation of a concrete dam based on guidelines	Man Rock Preprints Unit Volus	

		20	Description *	Parameter *	Units "	Conorete "	Reber	Rock 1	Water *	
		seasonal temperature variations	Mass density	ρ	kg/m²	2300	7800	270		A STATE OF THE PARTY OF THE PAR
1 1		<u>e</u>	Young's Modulus (secant)	Ex.	MPa	33000	200000	4000	3	A Company of the Comp
1 1		ë	Poisson's ratio	v	-	0.2	0.3	0.1	5	
- 1		2	Tarsile strength	4	MPa	2.9				
1 1		=	(Brazilian)	4						
- 1		븀	Compressive strength	4	MPs	26				
- 1 1		-	(cylinder)	~						
- 1 1		2	Coefficient of	Ø4	"C"exp-6	4	- 1			
- 1 - 1		=	diatation							
- 1 1		=	Specific heat capacity	0	Nm/kg °C	900	450	85	3	
- 1 1		2	Capacity	w	Witesco	2	30			
- 1 1		00	Thermal conductivity	w	W (mx)	2	.39			
1 1		60	Consection heat							
- 1 - 1		S	coefficient	C	W/(m°K)					art res
- 1 - 1		2	concrete/rock to)			13		100	500	
14 2017	* «	9	Practure energy	G _f	Nim	297.5				
	1	¥	Ultimate tensile strain	ε.			0.15			
- 1 - 1		Ε	Yield stress		MPa		360			Water level
- 1 1		- m								East 1
1 1		Ē								
		2	Concrete type		f _t E	G _F	$d_{ab} = \frac{EG_F}{I_s^2}$	Wmar	K_{Ie}	Upstream side
- 1 - 1		60		[mm] [N/s	mm ²] [N/mm ²	²] [N/m]	[mm]	[mm]	$[MN/m^{3/2}]$	
- 1 1		#							11.11	Front-plate /
		5	Arch dam A		1.4 36 000		1 440	0.25	2.9	Buttress wall
- 1 1		5	Arch dam B Arch dam C		27 000 20 29 000		1 580 1 960	0.37	2.9	
- 1 - 1		a concrete arch dam due	Arch dam C	120 2	.0 29 000	270	1 960	0.37	2.8	
- 1 - 1			Structural concrete	32 3	36 000	140	440	0.16	2.2	Downstream side
- 1 1		5	d _a = maximum agg		4 50 000	140	440	0.10		Downstream side
- 1 - 1		2	a, - maconsum aggr	egate mie						Inspection gangway
- 1 1		Cracking of								moposition gangina)
- 1 1		ë								Insulating wall
1 1		5								modeling wan
	1									
		E .	Material Density	Static	Dynamic	Poisson's p	p-wave e		Tensile	
		5		deformation modulus	deformation modulus	ratio v	relocity (kl (m/s)	ľa) (ľ)	(MPa)	
1 1		s E		(GPa)	(GPa)		(m/s)		(MFII)	
		a ≥s	Concrete 2400	20	30	0.2			-	
- 1 1		<u> </u>	Bedrock 2800 (1)	25	30	0.25				
		E 5	Water 1000			0.5	1414(1)			
14 2017		2 2	Dam / foundation							
14 2017	ш.	E 2	interface			-	. (45	0	
1 1			(2)							
- 1 - 1										
		ar a	(1) To be used for th	advanced dyn	unic interaction	models				
- 1 1		nd se	(1) To be used for th	e advanced dyn sdels with a nor	amic interaction 1-linear dam / fo	medels sundation inter	rface			
		and se	(3) To be used for th	e advanced dyn odels with a nor	amic interaction 1-linear dam / fo	medels sundation inter	rface			
		tic and seismic analysis RCC arch-gravity dam	(i) To be used for th (i) To be used for m	e advanced dyn odels with a nor	amic interaction 3-linear dam / fo	models sundation inter	rface			
		static and se RCC arc	(2) To be used for th (2) To be used for m	e advanced dyn odels with a nor	amic interaction 3-linear dam / fo	models sundation inter	rface			
		Static and seismic analysis RCC arch gravity dam	(1) To be used for th (2) To be used for m	e advanced dyn odels with a nos	amic interaction n-linear dam / fo	models sundation inter	rface			
		Static and se RCC arc	(i) To be used for th	e advanced dyn odels with a nos	amic interaction n-linear dam / fo	models sundation inter	rface			
			(2) To be used for m	e advanced dyn odels with a nor	n-linear dam / fo	sundation inter		- V	bter	
			(3) To be used for m	e advanced dyn odels with a nor	Unit	Concrete	Rock	V	later	560 AO R
			(2) To be used for m	e advanced dyn odels with a nor	Unit GPa	Concrete 22.41	Rock 22.41	-		1524 m TVP.)79675 1—80 00 m
			Density	e advanced dyn odels with a nor	Unit	Concrete 22.41 2483	Rock 22.41 2483	-	later 1000	
			(2) To be used for m	e advanced dyn	Unit GPa	Concrete 22.41	Rock 22.41	-		
			Parameter Elastic modulus Density Poisson's ratio	odels with a nor	Unit GPa	Concrete 22.41 2483	Rock 22.41 2483	-		
5 2040			Parameter Elastic modulus Density Poisson's ratio Compressive strengt	odels with a nor	Unit GPa kg/m³ - MPa	Concrete 22.41 2483 0.2 28.0	Rock 22.41 2483	-		15.24 m T/P) TOMER - 69.00 m - SPILLING ORIST G. 279.
5 2019	¥		Parameter Elastic modulus Density Poisson's ratio Compressive strengti Tensile strength	odels with a nor	Unit GPa kg/m³ - MPa MPa	Concrete 22.41 2483 0.2 28.0 2.0	Rock 22.41 2483	-		15.24 m TYP: - 95.00 m - 074.1887 0957 50, 279.
5 2019	¥		Parameter Elastic modulus Density Poisson's ratio Compressive strength Tensite strength	odels with a nor	Unit GPa kg/m³ - MPa	Concrete 22.41 2483 0.2 28.0 250	Rock 22.41 2483	-		15.24 m T/P) TOMER - 69.00 m - SPILLING ORIST G. 279.
5 2019	A		Parameter Elastic modulus Density Poisson's ratio Compressive strengt Tensile strength Frature energy Compressive strain a	odels with a nor	Unit GPa kg/m³ - MPa MPa	Concrete 22.41 2483 0.2 28.0 2.0 250 0.0025	Rock 22.41 2483	-		15 24 m Tyr. 1906 4 m 19 2 m 1
5 2019	¥		Parameter Elastic modulus Density Poisson's ratio Compressive strength Tensite strength	odels with a nor	Unit GPa kg/m³ - MPa MPa	Concrete 22.41 2483 0.2 28.0 250	Rock 22.41 2483	-		19.24 in 17% — 19.25
5 2019	Ą		Parameter Elastic modulus Density Poisson's ratio Compressive strength Fracture energy Compressive strain of compressive strength Fracture energy	odels with a nor	Unit GPa kg/m³ - MPa MPa	Concrete 22.41 2483 0.2 28.0 2.0 250 0.0025	Rock 22.41 2483	-		15.24 m TYP: - 95.00 m - 074.1887 0957 50, 279.
15 2019	A		Parameter Elastic modulus Densily Poisson's ratio Compressive strengt Tensile strength Tensile strength Tensile strain at peak	h t peak load	Ueit GPa kg/m³ - MPa MPa MPa Nm/m² - m/s	Concrete 22.41 2483 0.2 28.0 2.0 250 0.0025	Rock 22.41 2483 0.2 1939	- 1) - - - -	000	19.24 in 17% — 19.25
15 2019	Ą	ne Flat	Parameter Elastic modulus Density Poisson's ratio Compressive strength Fracture energy Compressive strain of compressive strength Fracture energy	h t peak load	Unit GPa kg/m³ — MPa MPa MPa Nmim² — —	Concrete 22.41 2483 0.2 28.0 2.0 250 0.0025	Rock 22.41 2483 0.2	- 1) - - - -		19.24 in 17% — 19.25
15 2019	A		Parameter Elastic modulus Densily Poisson's ratio Compressive strengt Tensile strength Tensile strength Tensile strain at peak	h t peak load	Unit GPa MPa MPa MPa MPa	Concrete 22.41 2483 0.2 28.0 2.0 250 0.0025 -	Rock 22.41 2483 0.2		139	19.24 in 17% — 19.25
15 2019	A		Parameter Elastic modulus Densily Poisson's ratio Compressive strengt Tensile strength Tensile strength Tensile strain at peak	h t peak load	Unit GPa Rg/m³ MPa MPa Nmm² m/s Schwaizes	Concrete 22.41 2483 0.2 25.0 2.0 0.00012*	Rock 22.41 2483 0.2 1939 3167	- Distriction of the second of	139	19.24 in 17% — 19.25
5 2019	¥		Parameter Elastic modulus Densily Poisson's ratio Compressive strengt Tensile strength Tensile strength Tensile strain at peak	h t peak load	Unit GPa	Concrete 22.41 2483 0.2 28.0 2.0 0.00012*	Rock 22.41 2483 0.2 1939 3167	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	139	19.24 in 17% — 19.25
5 2019	A		Parameter Elastic modulus Densily Poisson's ratio Compressive strengt Tensile strength Tensile strength Tensile strain at peak	h t peak load	Unit GPa Rg/m³ MPa MPa Nmm² m/s Schwaizes	Concrete 22.41 2483 0.2 28.0 2.0 250 0.00012*	Rock 22.41 2483 0.2 - - -	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	139	10.5.4 in 17% 2000

- ☐ Geometry based on as-built drawings, considering: construction change orders & phases, laser scanning coupled with material testing, etc. geometric entities, file format standards, near & far-field zoning, etc.
- Material properties with fractile values based on analysis type (linear, non-linear), calibration of numerical model (back-analyses) based on laboratory test results and monitoring data (sensitivity studies).
- ☐ FE model dimensions & size: Consideration dam-foundation-reservoir interaction and structural features such as joints, rebar, mesh refinement & objectivity, surveillance equipment, etc.
- □ Post-processing: Developed view, selective principal stress plotting, strength zoning, decision-making tools, etc.

New ICOLD Bulletin Prepared by Technical Committee A COMPUTATIONAL ASPECTS OF ANALYSIS AND DESIGN OF DAMS (2020-23)

Non-Linear Modelling of Concrete Dams

KNOWING YOUR CRACKS...

Cross-section

COMPRESSED SECTION

Combined normal and shear forces

Legend

Le Gage (LG), Kölnbrein (Kö), Daniel Johnson (DJ), Others (OT)

A, F, H = Air-face large normal force & zero shear force, K, E,

G = Large shear forces compared to normal forces, B, C, D =
inactive arch part.

Flexural Stability Index (normal force) - Applicable for Linear Analysis

 $\sigma_{\rm f}(t)$ = stress on the opposite dam face (compression or tension) acting in the same direction as $\sigma_{\rm t}$.

 $\sigma_{\rm f}(t)$ = tensile stress (greater than the tensile stress limit, eg. $f_{\rm a}$).

The FSI indicates whether or not the resultant force remains within the section.

IN A NUTSHELL ...

- **Plasticity** (isotropic, orthotropic, visco-plastle)
- Smeared cracking (multi-directional fixed crack, total strain based, Maekawa-Fukuura Model for Concrete, Kotsovos Concrete Model and others.)
- Viscoelasticity/creep (power law, Maxwell chain, Kelvin chain. etc.)
- Creep and Shrinkage (transient creep at elevated temperatures, uniaxial shrinkage/discrete function (maturity dependent) and Model Code inputs such as CEB-FIP MC 1990, ACI 209R-92, Korean KCI 2007, Dutch NEN 6720/A4, etc.)
- Interface Behaviour (such as linear and nonlinear elasticity, discrete cracking, crack dilatancy, bond-slip, friction, combined cracking-shearing-crushing, the Janssen nonlinear relation between bending moment and rotation for line interfaces to shell elements, and general user-supplied models). In addition, many of these models can be coupled with other material laws.
- Reinforcement (embedded, bond-slip and many subset constitutive models)
 - Model Code Libraries
 - Concrete (CEB-FIP Model Code 1990, fib Model Code for Concrete Structures 2010, Eurocode 2 EN 1992-1-1, American Concrete Institute (ACI) 209R-92, Am. Assoc. of State Highway and Transportation Officials (AASHTO), Japan Concrete Institute (JCI), Japan Society of Civil Engineers (JSCE), Korea Concrete Institute (KCI) 2007, NEN 6720/A4, JCSS Probabilistic Model Code)
 - Rebar and prestress cables (Eurocode 3 EN 1993-1-1, NEN 6770)
- **User-supplied models** (Elasticity and Viscoelasticity, Nonlinear Elasticity, Plasticity and Cracking, Shrinkage, Bond-slip, etc.)

- **Tied (Type 2):** method used to attach two parts of a finite element model together with differing mesh refinement.
- Sliding with separation and friction (Type 3): is a penalty formulation and allows two parts to be either initially separate or in contact; large relative motions are permitted, and Coulomb friction is included but cohesion is not. Surfaces may open or close in a completely arbitrary manner and the choice of master or slave surface is not important.
- **Shell edge tied to shell surface (Type 7)**. is the same as type 2, but only for shell elements.
- **Tied with failure (Type 9):** is a penalty method that ties the surfaces together until a prescribed failure criterion, based on normal and/or shear failure stress, is reached. Thereafter, the surface functions as a Type 3.
- Shear key contact surface: This is an in-house contact method developed in DYNA-3D by the Lawrence Livermore National Laboratory (LLNL). The geometry of the shear keys is defined as a sine wave of given amplitude (depth of the shear key) and length (upstream to downstream spacing of the shear keys). The contact can open and close. Sliding along the contact is governed by the opening of the joint and the geometry of the shear keys. The joint slides freely once the height of the shear key is exceeded by the joint opening.

- The evaluation and interpretation of results obtained following the nonlinear analysis of concrete dams depends greatly on the post-processing facilities available within the FE code and the modelling strategy applied in the pre-processing phases of the studies.
- For NLMCD it is recommended to *consider three-dimensional* modelling as a standard practice for gravity as well as arch dams. Deviation from this recommendation may result in the use of higher factors of safety.
- **Displacements** are perhaps best represented as vector plots with a component breakdown in the upstream-downstream, tangential and radial directions. These vectors can be overlaid onto contour plots that should be consistently scaled for the range of loading with the same increments.
- Principal stress vectors that overlay stress contours are also practical for evaluation and interpretation purposes.
- Potential failure identification: rocking-sliding blocks, tension, compression, shear and mixed modes.
- Plotting vectors on developed views that project the curved dam faces to a reference cylinder, with a suitably selected in radius that englobes the crest section, that is in turn "opened-up flat".
- Damage may be portrayed as a scalar or vector and readily plotted with time. As such "damage disks" can be plotted.
- Cracking and crack propagation can be visualised as lines and/or surfaces.
- History plots or "videos" are also a vital and in some cases the only way to understand the phenomena. In this sense, magnified plot histories for seismic and time-dependent effects such as AAR provide the key information needed to pinpoint the source of load and reaction.

ICOLD 27TH CONGRESS 90TH ANNUAL MEETING

CIGB 27^{èME} CONGRÈS 90^{èME} RÉUNION ANNUELLE

New ICOLD Bulletin Prepared by Technical Committee A
COMPUTATIONAL ASPECTS OF ANALYSIS AND DESIGN OF DAMS (2020-23)

Non-Linear Modelling of Concrete Dams

Chapter 6 - SELECTION OF MATERIAL PARAMETER VALUES FOR THE PRACTICAL NON-LINEAR MODELLING OF CONCRETE DAMS

Russell Michael GUNN
Swiss Federal Office of Energy (SFOE)

CONTENTS

- 6.1 INTRODUCTION
- 6.2 TRANSITION BETWEEN LINEAR AND NON-LINEAR ANALYSES
- 6.3 MATERIAL PARAMETERS DERIVED FROM DAM SURVEILLANCE AND MONITORING
- 6.4 MATERIAL PARAMETERS DERIVED FROM LABORATORY TESTS
- 6.5 MATERIAL PARAMETERS FOR STRUCTURAL INTERFACES
- 6.6 CASE STUDY
- 6.7 CONCLUSIONS

IT'S NOT WHAT WE DO, IT'S HOW WE DO IT ...

- This chapter presents an approach that can be adopted for the selection of material
 parameters for the practical nonlinear modelling of concrete dams as well as sample
 material parameter values collated from the literature and past ICOLD benchmarks (TCA).
- The focus is given to mass concrete and structural interfaces and reference to some reservoir and foundation material properties such as different rock types are provided.
- Great importance is given herein to field data and selecting or ascertaining material properties from laboratory samples extracted from the structure. Due to economic reasons, more often than not recourse is made to data found in the literature rather than laboratory test results on the actual structure under review. Moreover, only standard short-term tests are performed. This might be a false economy especially when performing NLMCD.
- Distinction is made between reversible (linear) and irreversible (nonlinear) movements
 noting that we are only addressing material nonlinearity for small displacements.

TRYING TO RUN BEFORE YOU CAN WALK ...

$$f_a' = \frac{B_a}{\sqrt{\left[1 + \left(\frac{t_p}{t_0}\right)^{0.22} \cdot \frac{1}{\lambda_0} \cdot \frac{d}{d_a}\right]}} \cdot f_t' = K_t f_t'$$

 B_a = experimental parameter (from lab tests)

 t_p = time to peak load in the field

 t_0 = time to peak load in laboratory tests.

 λ_0 = experimental parameter determined from size dependent laboratory tests.

d = section thickness.

 d_a = maximum aggregate size.

 f_t = direct tensile strength given by :

$$\alpha_0 + \alpha_1. f_c \approx 0.32. f_c^{2/3}$$
.

$$\alpha_0 = 0$$
 when $0 \le f_c \le 15$ MPa

and 1 when $15 \le f_c \le 50$ MPa.

 $\alpha_1 = 0.1333$ when $0 \le f_c \le 15$ MPa

and 0.0667 when $15 \le f_c \le 50$ MPa.

(c)

Demand-capacity Ratio

(d)

Actual and Apparent Tensile strengths taking into account size and rate effects

PROTOTYPE MATERIAL CALIBRATION ... with field investigations .. to be sure!

Three methods may be used to analyse measured data and assist in the selection of material parameters for the NLMCD: (a) *deterministic* such as the finite element method; (b) *statistical*, based solely on the analysis of measurement data and (c) *hybrid* methods that incorporate methods (a) and (b).

$$\begin{split} f_1(t,w,s) &= f_1(t) + f_2(w) + f_3(s) \\ f_1(t) &= C_0 + C_1 e^{-t} + C_2 e^t \\ f_2(w) &= C_3 w + C_4 w^2 + C_5 w^3 + C_5 w^4 \\ f_3(s) &= C_7 cos(s) + C_8 sin(s) + C_9 sin^2(s) + C_{10} sin(s) cos(s) \end{split}$$

 C_i (\underline{i} = 0 to 10) = unknown coefficients; s = seasonal temperatures; w = reservoir elevation and t = time.

MATERIAL PARAMETERS WITH A NICE TWIST ...

Fracture energy to derive tensile strength with mesh objectivity ...

Compression - compression

New ICOLD Bulletin Prepared by Technical Committee A COMPUTATIONAL ASPECTS OF ANALYSIS AND DESIGN OF DAMS (2020-23) **Non-Linear Modelling of Concrete Dams**

 $-+-\sigma_1/\sigma_2 = -1/-1$ (83)

Strain mm/m (ε_1 , ε_2 , ε_3)

traction

Biaxial envelope

Triaxial loading

Load Combination	Result.	. Sliding ¹⁾		Overturning Buoyancy		Bearing	Stresses ¹⁾		1)
	γ_{n}	γ_{mc}	$\gamma_{m\varphi}$	γь	$F_f^{2)}$ >	γ_{mq}	σ_{c}	$\sigma_{\text{c-t}}^{ 3)}$	σ_{t}
Construction	e/3	0.0	1.3	1.3	0%		2.0	2 à 1.5	1.5
Usual	e/3	0.0	1.5	1.5	0%	1.5	3.0	3 à 2	2.0
Unusual	2e/3	0.0	1.3	1.3	0%	1.3	2.0	2 à 1.5	1.5
Extreme	е	0.0	1.0	1.0	0%	1.0	1.0	1 à 1	1.0

Rate effects

Remarks

 f'_c = uniaxial compressive strength at 365 days, cylinder

 f'_t = tensile strength (brazilian), cylinder

e = section thickness

- 1) State of stress within dam, interfaces and dam-foundation interface
- 2) $F_f = (N-U)/U$ where

N = Composant of normal force on the section

U = resultant interstitial forces

3) Biaxial strength (Kupfer et al.)

Traction - traction

CYCLIC CREEP WITH RECOVERY by relaxation ...

$$J(t,\tau) = \frac{1}{E_0} \left(K_1 + K_2 \left(1 - e^{\left(\frac{t_u - \tau}{T_f}\right)} \right) \right) \left(1 + \phi \left(\tau^{-m} + \alpha\right) \left(t - \tau\right)^n \right)$$

Cyclic long-term creep: Double power (top right) and modified double power laws (bottom right).

SPECIAL EDITION ... NEW AAR CONCEPT

Core samples: Factors affecting results:

- Structural stress-state
- Casting
- Phases for residual expansion (conditioning, non-linear, linear, irreversible)
- Leaching
- Anisotropy (length & diameter) Mitigation Measures:
- Taken horizontally (Casting)
- Greater than 10 cm from surface (avoid leaching)
- Size, φ = 100 m, L = 200 mm

Residual expansion test [21]:

- Previous AAR identification test conditions apply (sample selection & tests). Results used for prognosis test validations.
- Cores immediately wrapped, stored at 38°C. RH>95% (saturated air) or
- water or NaOH solutions - Phase 1: Conditioning (moisture
- uptake)
- Phase 2a: Non-linear expansion
- Phase 2b: Linear-expansion - Phase 3: Irreversible expansion
- (AAR)
- Numerical Modelling [22]
- Calibration (Past service periods)
- Prediction (long-term > 20 years)
- Incorporation of rehabilitation measurements (ex. saw cutting) into AAR numerical model(s).

New three-step approach to select AAR material parameters

- □ Phase 1 FE code and constitutive model validation based on core laboratory experiments (RILEM 2021);
- □ Phase 2 Existing dam structural or macro level calibration based on observed field measurements (BMW11);
- □ **Phase 3** Rehabilitated dam structural or macro level calibration based on the results of steps 1 and 2 (**CHJE2021**).

Coupe en travers bloc

STRUCTURAL INTERFACES EXPLAINED LIFT JOINTS Joint centres 🥠

To a the same and	Static Co	onditions	Dynamic Conditions		
Tensile strength	psi	MPa	psi	MPa	
Parent concrete (splitting)	1.7 f'c ^{2/3}	0.32 f'c ^{2/3}	2.6 f'c ^{2/3}	0.49 f'c ^{2/3}	
Bonded lift joints (direct)	0.85 f'c ^{2/3}	0.16 f'c ^{2/3}	1.3 f'c ^{2/3}	0.24 f'c ^{2/3}	
Unbonded lift joints	Nil	Nil	Nil	Nil	

Shear Strength	Cohesion		Angle of friction
(Peak)	c (psi)	c (MPa)	f (°)
Best fit	304.58	2.10	57
Lower bound	137.79	0.95	57
Sliding friction strength			
Best fit	72.52	0.50	49
Lower bound	0.00	0.00	48

DAM-FOUNDATION INTERFACES

PUTTING IT ALL INTO PRACTICE

PLACE YOUR ORDERS to learn more

Thank you for your attention Merci pour votre attention

Schweizerisches Talsperrenkomitee Comité suisse des barrages Comitato svizzero delle dighe Swiss Committee on Dams

www.ecsymposium2023.ch

Join us in Interlaken
Rejoignez-nous à Interlaken
Sept. 5 – 8, 2023

NLMCD EXAMPLES AND CASE HISTORIES

- BW 14 Cracking of a concrete arch dam due to seasonal temperature variation
- BW 13 Numerical modelling of the partial demolition of Beauregard dam
- **...**
- Many examples outline how calibrate numerical models with measured data

Cracking of a slender, reinforced concrete arch dam due to seasonal temperature variations

Each participant had to predict

- The **extent of cracking** on the dam

New ICOLD Bulletin Prepared by Technical Committee A COMPUTATIONAL ASPECTS OF ANALYSIS AND DESIGN OF DAMS (2020-23)

Non-Linear Modelling of Concrete Dams

Provided data

General material parameters

 Density, E-modulus, Poisson's ratio, thermal data, strengths etc.

Loading conditions

- Gravity
- Hydrostatic water pressure
- Seasonal temperature variations

Aspects of the numerical modelling to be freely chosen

- How to perform the **thermal analysis** (steady state vs transient analysis, convective boundary conditions vs prescribed nodal temperatures etc.)
- ☐ How to model the contact between the dam and the foundation (fixed contact, contact formulation, interface elements etc.)

Aspects of the numerical modelling to be freely chosen

- Fracture energy and type of non-linear material model for concrete
- How to include the rock mass and assign boundary conditions (size of the rock and where and how to apply the boundary conditions)

Thermal analyses results

Most participants
performed transient
analysis with convective
boundary conditions
(Robin) instead of
prescribed nodal
temperatures conditions
(Dirichlet) but all results
are in good agreement

Three examples of transient analyses

An example of steady state analysis

Influence of contact modelling

- Different approaches influence the displacements of the dam and the crack pattern
- Numerical issues arise related to the local sliding, especially in the central part of the dam
- A participant constrained the downstream line of the concrete dam only to avoid sliding

Influence of the fracture energy on the crack pattern

Observed crack pattern

- □ The concrete-rock interaction has large influence on the predicted displacements (large joint opening occurs due to the slenderness of the dam)
 - Cohesive interface models have no influence on the results
 - Tied constraints provide results in bad agreement with the measured one

The temperatures provided to the participants were more extreme than those recorded when measuring the dam displacements

Modelling of the nonlinear behaviour of Beauregard dam

What was going on?

Since the first fillings, the dam started deflecting upstream

in 2013 mm/year

In 1969 the Italian Dam
Authorities lowered down the
operational water level from 1770 to 1710 m asl

(limited volume nearly 1/10 of the designed one)

Non-Linear Modelling of Concrete Dams

Cracks on the downstream face and sliding of some vertical joints

Why non linear numerical modelling?

Focus on step 1

1

Identify the material parameters of the numerical model to interpret the dam behavior since its first fillings

2

Forecast the future dam behavior at short-medium term resorting to the calibrated numerical model

3

Support the designer to assess different rehabilitation solutions to guarantee the safety long-term operation of the dam

The numerical finite element model

... and 16 contact surfaces

In situ and testing data were used to define the material parameters of the constitutive laws of concrete

Concrete Damage
Plasticity
constitutive law
for concrete

ell'intorno della Diga per ilperiodo 1958 -1967

Data from the monitoring and control systems are important first to set up properly the loading and kinematic conditions of the numerical model

concio "45"

concia "O"

Numerical displacements compared to the measured ones to calibrate the structural response of the numerical model

The numerical damage parameter contour was compared with:

- 1. the cracks detected by visual inspections
- 2. the P-wave velocity tomography measured on the downstream face and the main vertical section

Partial demolition by blasting

ICOLD & CFBR Technical Committee Workshop on Non Linear Modelling of Concrete Dams

Manouchehr Hassanzadeh Russell Gunn Frigerio Antonella

