

Course 3: Analysis methods of dam monitoring data

Cours n°3: Les méthodes d'analyse des mesures d'auscultation des barrages

Introduction to Machine Learning Methods Introduction aux méthodes d'apprentissage automatique

Nathalie Rosin-Corre TRACTEBEL

CIGB-ICOLD Marseille 2022 - Course 3: Analysis methods of dam monitoring data - 27/05/2022

Introduction to Machine Learning Methods

- Explanatory Data-based Models
- Multiple Linear Regression (HST) and its limitations
- Application of some Machine Learning methods to dam monitoring data analysis:
 Support Vector Regression (SVR), Random Forest (RF), Artificial Neural Network (ANN)

Explanatory Data-based Models

- Dam safety relies on the detection of irreversible changes in the dam behaviour possibly signalling a failure mechanism
- Explanatory data-based models can predict a response value Y based on explanatory variables X_1, \ldots, X_p :

$$Y = f(X_1, \dots, X_p) + \varepsilon$$

- Variables with reversible effects: reservoir level Z, seasonal angle θ (seasonal temperature), air temperature, rainfall...
- Variable with irreversible effects: time t (ageing of dam)
- Error ε : what is not taken into account by the model

Multiple Linear Regression (HST) and its limitations

 Response of the dam assumed to be the sum of responses to each of explanatory variables:

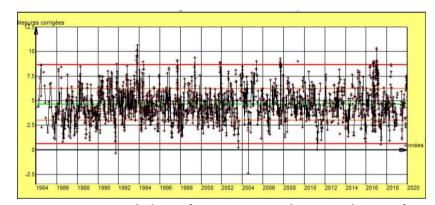
$$Y = E_Z + E_\theta + E_t + \varepsilon$$

Where

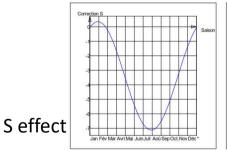
H effect
$$E_Z = a_1 Z + a_2 Z^2 + a_3 Z^3 + a_4 Z^4$$

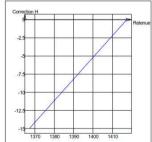
S effect $E_\theta = b_1 \cos \theta + b_2 \sin \theta + b_3 \cos 2\theta + b_4 \sin 2\theta$
T effect $E_t = c_1 t + c_1 e^{-t/t_0}$ (+step function)

- Pros: analytical expression easy to handle diagnosis of monitoring data (normality thresholds)
- Cons: explanatory variables not independant non linear response



Corrected data (same H and S conditions) and normality thresholds

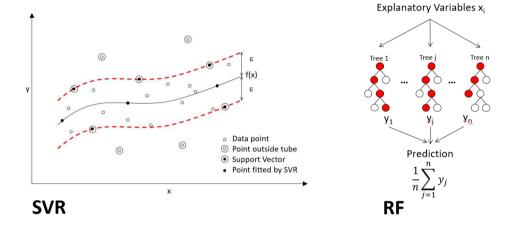


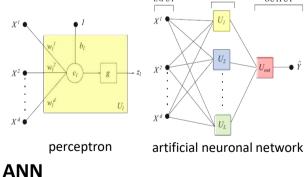


H effect

Application to dam monitoring data analysis

- Three Machine Learning methods:
 - Support Vector Regression (SVR)
 - Random Forests (RF)
 - Artificial Neural Network (ANN)
 - Limited number of hyperparameters
- Applications to dam monitoring data analysis:
 - Movement of a gravity dam (≈ 600 data over 48 years)
 - Leakage flow of an arch dam (≈ 2000 data over 40 years)
 - Piezometric levels in an embankment dam (≈ 500 data over 20 years)





Application to dam monitoring data analysis

- Four input explanatory variables: reservoir level Z, seasonal angle $(\cos\theta, \sin\theta)$, time t (same as HST models)
- Calibration and validation:
 - Database without considering the last three years
 - Calibration: 75%; validation: 25% (random draw)
- Predictive capacity assessed over the last 3 years
- Coefficient of determination = part of the dispersion of the observed measurements explained by the model = statistical learning capacity of the model
- Comparison with HST models

Hyperparameters	Gravity dam	Arch dam	Embankment dam
	movement	leakage rates	piezometric levels
SVR			
K	radial	radial	radial
ε	0.1	0.1	0.1
C	3	3	2
RF			
n_{a}	100	100	80
n_{ν}	2	2	2
ANN			
g	sigmoid	sigmoid	sigmoid
m	(4,4)	(6,6)	(4,8,4)
n_{rep}	6	5	10

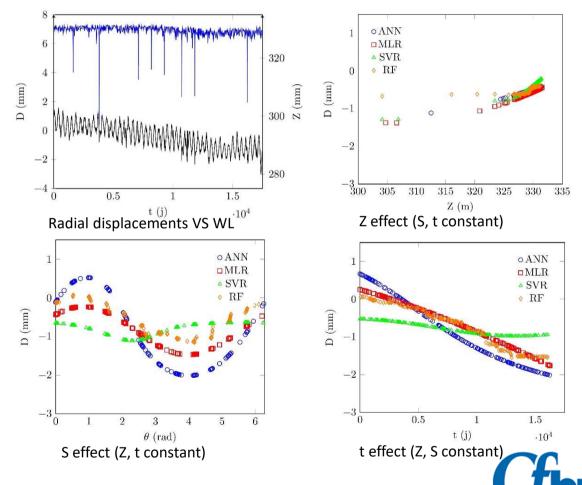
SVR: K kernel function, ϵ tolerance margin on regression error, C penalisation of error

RF: n_a number of trees, n_v number of variables drawn at each branch

ANN: g activation function, m number of perceptrons per layer, n_{ren} number of re-run (learning base quite limited)

Gravity Dam Movement (Pendulum)

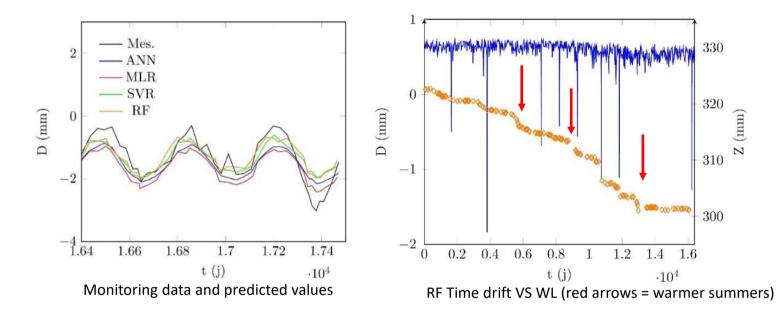
- Successive drawdowns with slight upward trend
- R²≈0.9 for all models
- Differences in Z, S and time effects (drawn with other explanatory variables at their median values):
 - Z effect with threshold near 325 for RF
 - S effect amplitude and phasing
 - time effect negligeable for SVR



et réservoirs

CIGB-ICOLD Marseille 2022 - Course 3: Analysis methods of dam monitoring data - 27/05/2022

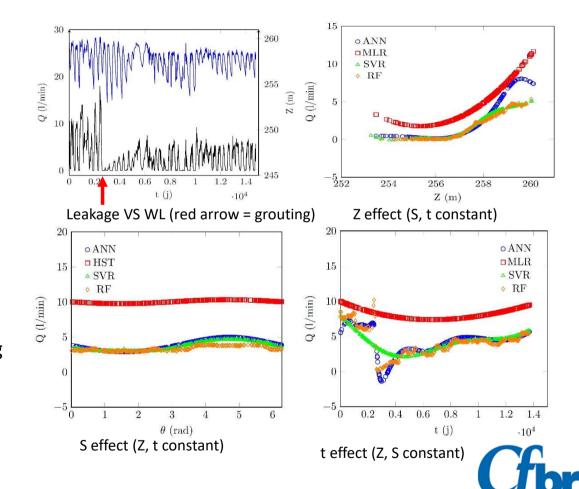
Gravity Dam Movement (Pendulum)



- Similar predicted behaviours for all models
- SVR and RF best-performing for prediction though amplitude of last year not replicated
- RF time drift with steps correlated to drawdowns and warmer summers

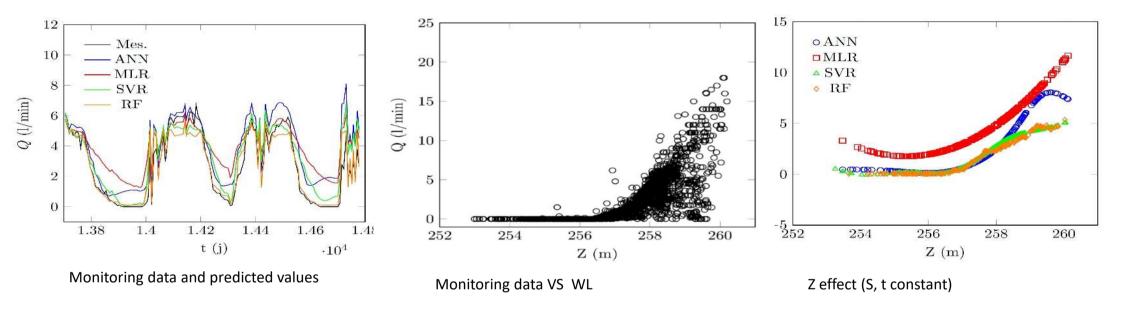
Arch Dam Leakage Rate

- Leakage of a lift joint, grouting at 2200 days, increase and stabilization
- R²≈0.8 (SVR, MLR) to 0.9 (ANN, RF)
- Z effect:
 - Threshold effect at the lift joint level
 - MLR unrealistic
- Time effect:
 - Negative values by ANN
 - No clear separation before/after grouting by MLR, SVR



et réservoirs

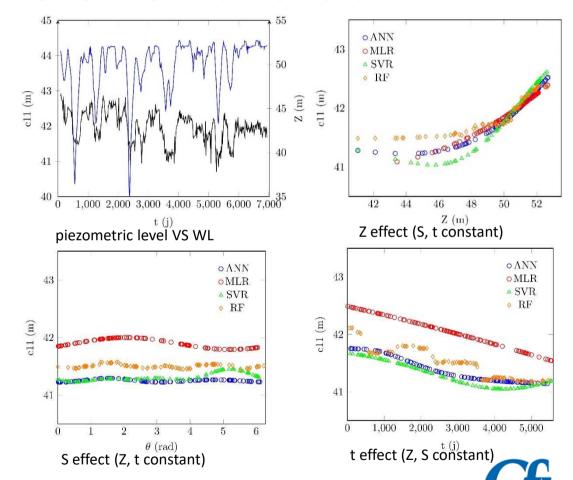
Arch Dam Leakage Rate



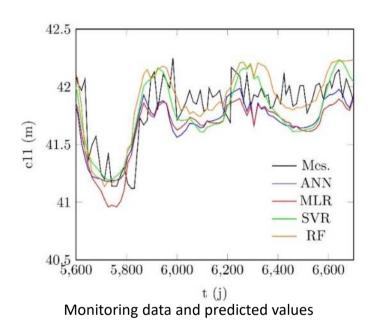
- RF model best-performing for prediction
- Closure of crack at higher WL by SVR, RF, ANN?

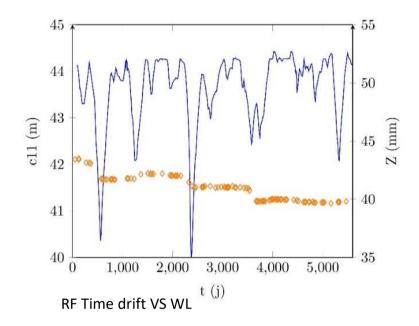
Embankment Dam Piezometric Levels

- VW cell near mid-height of core (D/S third)
- R²≈0.8 (MLR, ANN) to 0.9 (SVR, RF)
- Z effect:
 - Same for WL>50
 - Threshold effect near 46-48 (SVR, ANN, RF)?
- · Low S effect for all methods
- Same trend for t effect
 - SVR unrealistic inflexion after 4500 days



Embankment Dam Piezometric Levels





- RF model best-performing for prediction
- RF irreversible time drift correlated with significant drawdown?

Conclusions

- All data-based methods sensitive to data quality and sampling bias: measurement errors, too small populations, statistically non-homogeneous distributions
- Machine Learning methods can provide interesting additions to the analysis of dam monitoring data, especially when conventional linear regression models have low coefficients of determination
- Engineering judgment is needed to assess if use of these methods, requiring significant technical skills and expertise, is appropriate

