

Approche innovante pour la justification du barrage en béton de la Balme de Rencurel

F. LAIGLE, SETEC Terrasol $\begin{tabular}{l} \begin{tabular}{ll} \label{eq:setec} \end{tabular} (ex \end{tabular} WSP \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular}$

H. TRAN & M. CAMUSSO, ITASCA

- 1. Principales caractéristiques du barrage
- 2. Démarche progressive d'études
- 3. Réflexions sur la modélisation non-linéaire d'un géomatériau cohérent
- 4. Modèle de calcul, hypothèses et interprétation
- 5. Analyse et compréhension du comportement
- 6. Estimation de la marge de sécurité et identification du mécanisme de ruine
- 7. Conclusions

Principales caractéristiques du barrage

- Caractéristiques générales du barrage:
 - Barrage Poids-Voûte en béton cyclopéen
 - Rivière: La Bourne (38/26)
 - > Mise en service : 1912
 - Maître d'Ouvrage : EDF
 - > Hauteur : 24m

et réservoirs

- Béton cyclopéen
 - $\geq \approx 47\%$ de blocs de calcaire
 - $\geq \approx 30\%$ de mortier compact
 - $\succ \approx 14\%$ de mortier d'apparence peu compact
 - $\geq \approx 9\%$ de vide

Caractéristiques mécaniques des composants

\triangleright	Blocs de calcaire :	$Rc \approx 130 MPa$
\triangleright	Mortier «neu noreux »:	$Rc \approx 3.5 MPa$

Mortier «poreux »: Rc ≈ 0.8 MPa

Résistance généralisée à l'ensemble du corps du barrage : $Rc \approx 0.8 MPa$

- Perré aval en moellons calcaires jointoyés
- Fondation rocheuse calcaire et un contact de bonne qualité et franc entre le barrage et sa fondation

Symposium 2025, Aix-les-Bains – 30 janvier 2025

- Calculs 2D
 - Non justification liée à la géométrie 2D retenue
- Calculs 3D avec un comportement élastique linéaire
 - Mise en évidence d'un report important des contraintes vers les rives.
 - ✓ ≈3/4 de la poussée amont transmise aux rives
 - ✓ ≈1/4 de la poussée amont reprise en cisaillement sur les plans horizontaux
 - Stabilité générale glissement/renversement justifiée
 - > Concentrations de contraintes de compression en rives, dans le béton cyclopéen : \approx 0.7 MPa.
 - > Non respect du critère de compression !!
- Calculs 3D avec un comportement non-linéaire du béton cyclopéen
 - Une discrétisation plus fine de l'ouvrage
 - Une description « physique » de la rhéologie du béton cyclopéen
 - Prise en compte du perré et de la piézométrie dans l'ouvrage et sous-pressions
 - Une démarche d'évaluation de la marge de sécurité en cohérence avec les mécanismes de dégradation du béton cyclopéen

Réflexion sur une modélisation non-linéaire d'un géomatériau cohérent

«Grains» Blocs et

débris de calcaire

«Colle»

Mortier

Emeriault F. & Geindreau C. & Naillon A. & Abbas M. & Sirkis M. – Analyse microstrucurale de la transition frottement-cohésion dans les sables biocimentés – Séance technique CFMR/CFMS/CFGI sur les roches tendres et sols indurés – 2021

Symposium 2025, Aix-les-Bains – 30 janvier 2025

comité frança et réservoi

Réflexion sur une modélisation non-linéaire d'un géomatériau cohérent

800

700

y = 1,39x

$$\mathbf{\tau} = \sigma_{n} \tan\left(\mathbf{\phi}_{cr} + \mathbf{\psi}(\mathbf{\gamma}_{p}; \overline{\mathbf{\sigma}})\right) + \mathbf{C}(\mathbf{\gamma}_{p})$$

Symposium 2025, Aix-les-Bains – 30 janvier 2025

Modèle de calcul, hypothèses et interprétation

	Modélisation élastique	Modélisation élastoplastique sans écrouissage	Modélisation élastoplastique avec écrouissage
Masse volumique		2300 kg/m ³	
	Paramètres d'élas	sticité	
Module d'Elasticité E	10 GPa		
Coefficient de Poisson v	0,20		
Paramètres	du critère de rési	stance maximale	
Angle de frottement au pic de résistance		45°	35°
Angle de dilatance au pic de résistance		0°	10°
Cohésion au pic de résistance		165 kPa	165 kPa
Résistance en traction au pic de résistance		0 kPa	0 kPa
Paramètres da	ins le domaine po	st-pic de résistance	
	Etat « fissuré	39	
Angle de frottement - Etat « fissuré » : γ _P = 0.1%			35°
Angle de dilatance - Etat « fissuré » : γ _P = 0.1%			19°
Cohésion - Etat « fissuré » : γ _p = 0.1%			0 kPa
Résistance en traction - Etat « fissuré » : γ _P = 0.1%			0 kPa
	Etat « résidue	l »	
Angle de frottement - Etat « résiduel » : 7p = 5 %			35°
Angle de dilatance - Etat « résiduel » : γ _P = 5 %			0*
Cohésion - Etat « résiduel » : _{Yp} = 5 %			0 kPa
Résistance en traction - Etat « résiduel » : yp = 5 %			0 kPa

Situations de chargement:

- Construction
- Situation normale RN
- Situation de crue exceptionnelle
- Situation extrême sismique

Piézométrie:

- Sous-pressions à l'interface barrage/fondation
- Piézométrie dans le corps du barrage

Interprétation des calculs:

- Analyse du champ des contraintes & deformations irréversibles
- Analyse des déplacements
- Identification du comportement et de la marge de sécurité par une approche:

$C_{réduction} \& \psi_{réduction}$

Analyse et compréhension du comportement

et réservoirs

- 1. Report des contraintes vers les rives
- 2. Concentration des efforts de compression dans le perré aval
- 3. Le comportement du barrage est régi par 2 mécanismes :
- Un mécanisme représentatif de la stabilité générale de l'ouvrage, correspondant à un "effet voûte" et renvoi des efforts très rapidement sur l'amont, vers la foundation en rives
- Un mécanisme représentatif d'un risque d'instabilité "interne", ne mobilisant que la partie aval de l'ouvrage, sur une faible profondeur, et qui correspondrait à une tendance au "glissement" du béton cyclopéen (avec degradation éventuelle préalable du perré).
- 4. Une dégradation du perré peut ici être considérée comme un indicateur d'une éventuelle évolution du comportement de l'ouvrage.

Estimation de la marge de sécurité et identification du mécanisme de ruine

Symposium 2025, Aix-les-Bains – 30 janvier 2025

Comportement et justification de la stabilité de l'ouvrage

- Les coefficients de sécurité sous différentes situations sont acceptables et très élevés en situation normal.
- Si le perré ne contribue pas significativement à la stabilité de l'ouvrage, il est un indicateur pertinent d'une potentielle évolution du comportement du barrage.
- Le comportement est régi par 2 mécanismes :
 - Un mécanisme «interne » de glissement d'une partie de la masse de béton cyclopéen qui ne contribue pas à la stabilité générale du corps du barrage
 - Un mécanisme qui pilote la stabilité générale du barrage, qui correspond à un transfert des efforts vers les rives par effet de voûte.
- La ruine de l'ouvrage correspondrait à un cisaillement du béton cyclopéen vers la rive droite, empêchant l'effet « voûte » de se maintenir par suite d'une baisse de résistance du béton « dégradé ».

Approche de calcul et interprétation

- Nécessité de s'interroger sur les mécanismes régissant le comportement au-delà du maximum de résistance, pour un matériau cohérent.
- > Approche type « géomatériaux » appliquée à un béton cyclopéen (grains+colle)
- > Indentification du mode de ruine et de la marge de sécurité en cohérence avec la rhéologie du matériau

